11,916 research outputs found

    Arboricity, h-Index, and Dynamic Algorithms

    Get PDF
    In this paper we present a modification of a technique by Chiba and Nishizeki [Chiba and Nishizeki: Arboricity and Subgraph Listing Algorithms, SIAM J. Comput. 14(1), pp. 210--223 (1985)]. Based on it, we design a data structure suitable for dynamic graph algorithms. We employ the data structure to formulate new algorithms for several problems, including counting subgraphs of four vertices, recognition of diamond-free graphs, cop-win graphs and strongly chordal graphs, among others. We improve the time complexity for graphs with low arboricity or h-index.Comment: 19 pages, no figure

    Maximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull

    Full text link
    The Maximum Weight Independent Set (MWIS) Problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. Being one of the most investigated and most important problems on graphs, it is well known to be NP-complete and hard to approximate. The complexity of MWIS is open for hole-free graphs (i.e., graphs without induced subgraphs isomorphic to a chordless cycle of length at least five). By applying clique separator decomposition as well as modular decomposition, we obtain polynomial time solutions of MWIS for odd-hole- and dart-free graphs as well as for odd-hole- and bull-free graphs (dart and bull have five vertices, say a,b,c,d,ea,b,c,d,e, and dart has edges ab,ac,ad,bd,cd,deab,ac,ad,bd,cd,de, while bull has edges ab,bc,cd,be,ceab,bc,cd,be,ce). If the graphs are hole-free instead of odd-hole-free then stronger structural results and better time bounds are obtained

    On graphs with no induced subdivision of K4K_4

    Get PDF
    We prove a decomposition theorem for graphs that do not contain a subdivision of K4K_4 as an induced subgraph where K4K_4 is the complete graph on four vertices. We obtain also a structure theorem for the class C\cal C of graphs that contain neither a subdivision of K4K_4 nor a wheel as an induced subgraph, where a wheel is a cycle on at least four vertices together with a vertex that has at least three neighbors on the cycle. Our structure theorem is used to prove that every graph in C\cal C is 3-colorable and entails a polynomial-time recognition algorithm for membership in C\cal C. As an intermediate result, we prove a structure theorem for the graphs whose cycles are all chordless

    Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

    Full text link
    A graph GG is {\em matching-decyclable} if it has a matching MM such that GMG-M is acyclic. Deciding whether GG is matching-decyclable is an NP-complete problem even if GG is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to O(n)O(n)-time recognition algorithms

    On hereditary graph classes defined by forbidding Truemper configurations: recognition and combinatorial optimization algorithms, and χ-boundedness results

    Get PDF
    Truemper configurations are four types of graphs that helped us understand the structure of several well-known hereditary graph classes. The most famous examples are perhaps the class of perfect graphs and the class of even-hole-free graphs: for both of them, some Truemper configurations are excluded (as induced subgraphs), and this fact appeared to be useful, and played some role in the proof of the known decomposition theorems for these classes. The main goal of this thesis is to contribute to the systematic exploration of hereditary graph classes defined by forbidding Truemper configurations. We study many of these classes, and we investigate their structure by applying the decomposition method. We then use our structural results to analyze the complexity of the maximum clique, maximum stable set and optimal coloring problems restricted to these classes. Finally, we provide polynomial-time recognition algorithms for all of these classes, and we obtain χ-boundedness results
    corecore