19 research outputs found

    Linear Predistortion-less MIMO Transmitters

    Get PDF

    Built-in Chaining: Introducing Complex Components into Architectural Synthesis

    Get PDF
    Abstract-In this paper, we extend the set of library components which are usually considered in architectural synthesis by components with built-in chaining. For such components, the result of some internally computed arithmetic function is made available as an argument to some other function through a local connection. These components can be used to implement chaining in a datapath in a single component. Components with built-in chaining are combinatorial circuits. They correspond to "complex gates" in logic synthesis. If compared to implementations with several components, components with built-in chaining usually provide a denser layout, reduced power consumption, and a shorter delay time. Multiplier/accumulators are the most prominent example of such components. Such components require new approaches for library mapping in architectural synthesis. In this paper, we describe an IP-based approach taken in our OSCAR synthesis system

    Preliminary study of NAVSTAR/GPS for general aviation

    Get PDF
    The activities conducted as a planning effort to focus attention on the applicability of the global positioning system for general aviation are described. The description of GPS, its impact on economic and functional aspects of general aviation avionics, as well as a declaration of potential extensions of the basic concept have been studied in detail

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Nonlinear optical properties of nano structures

    Get PDF
    Nonlinear optical properties of nanoscale semiconductors had been a topic of intense research in recent years in attempts to realize all-optical communication systems. These semiconductor nanoclusters, in the range of 1-100nm are hosted in a dielectric material and are considered as a particular example of Conditional Artificial Dielectric (CAD). It has been reported that the dielectric properties of such materials will be greatly changed by light intensity. Two main paths to realize nano semiconductor clusters are reported in this dissertation. The Pulsed Laser Deposition (PLD) technique is first described. Here we were investigating the effect of surface modification of nano silicon clusters by incorporating various gases (142, Ar, He) during the deposition process. Linear and nonlinear optical properties of these passivated Si nanoclusters were obtained. Ion Implantation is another successful method to obtain nano semiconductor clusters. In order to ftirther enhance the nonlinear optical properties of these clusters, we incorporated them in optically confining structures, such as three-dimensional photonic crystals. The latter part of the dissertation is devoted to three-dimensional periodic structures made of silica spheres (opal) which were implanted with Si, Ge and Er. Linear and nonlinear optical properties of these novel materials have been measured and assessed

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Payload/orbiter signal-processing and data-handling system evaluation

    Get PDF
    Incompatibilities between orbiter subsystems and payload communication systems to assure that acceptable and to end system performamce will be achieved are identified. The potential incompatabilities are associated with either payloads in the cargo bay or detached payloads communicating with the orbiter via an RF link. The payload signal processing and data handling systems are assessed by investigating interface problems experienced between the inertial upper stage and the orbiter since similar problems are expected for other payloads

    TDRSS telecommunications study, phase 2

    Get PDF
    Providing an extension to parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS), this phase considers candidate modulation waveforms which could meet the shuttle telecommunications requirements and also be compatible with the TDRSS single access S-band service. In addition, it considers the feasibility of modifying a single access S-band user transponder for operation with conventional STDN signals emanating from remotely located ground stations

    TDRSS telecommunications study. Phase 1: Final report

    Get PDF
    A parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS) was performed. Emphasis was placed on maximizing support capability provided to the user while minimizing impact on the user spacecraft. This study evaluates the present TDRSS configuration as presented in the TDRSS Definition Phase Study Report, December 1973 to determine potential changes for improving the overall performance. In addition, it provides specifications of the user transponder equipment to be used in the TDRSS

    AROD test model hardware, volume 2 Final report

    Get PDF
    Engineering design data on vehicle-borne subsystems of airborne range and orbit determination syste
    corecore