228 research outputs found

    Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning

    Full text link
    Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots' states and intents. While other distributed multi-robot collision avoidance systems exist, they often require extracting agent-level features to plan a local collision-free action, which can be computationally prohibitive and not robust. More importantly, in practice the performance of these methods are much lower than their centralized counterparts. We present a decentralized sensor-level collision avoidance policy for multi-robot systems, which directly maps raw sensor measurements to an agent's steering commands in terms of movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to find an optimal policy which is trained over a large number of robots on rich, complex environments simultaneously using a policy gradient based reinforcement learning algorithm. We validate the learned sensor-level collision avoidance policy in a variety of simulated scenarios with thorough performance evaluations and show that the final learned policy is able to find time efficient, collision-free paths for a large-scale robot system. We also demonstrate that the learned policy can be well generalized to new scenarios that do not appear in the entire training period, including navigating a heterogeneous group of robots and a large-scale scenario with 100 robots. Videos are available at https://sites.google.com/view/drlmac

    Collision-aware Task Assignment for Multi-Robot Systems

    Full text link
    We propose a novel formulation of the collision-aware task assignment (CATA) problem and a decentralized auction-based algorithm to solve the problem with optimality bound. Using a collision cone, we predict potential collisions and introduce a binary decision variable into the local reward function for task bidding. We further improve CATA by implementing a receding collision horizon to address the stopping robot scenario, i.e. when robots are confined to their task location and become static obstacles to other moving robots. The auction-based algorithm encourages the robots to bid for tasks with collision mitigation considerations. We validate the improved task assignment solution with both simulation and experimental results, which show significant reduction of overlapping paths as well as deadlocks

    Cooperative Collision Avoidance in Mobile Robots using Dynamic Vortex Potential Fields

    Full text link
    In this paper, the collision avoidance problem for non-holonomic robots moving at constant linear speeds in the 2-D plane is considered. The maneuvers to avoid collisions are designed using dynamic vortex potential fields (PFs) and their negative gradients; this formulation leads to a reciprocal behaviour between the robots, denoted as being cooperative. The repulsive field is selected as a function of the velocity and position of a robot relative to another and introducing vorticity in its definition guarantees the absence of local minima. Such a repulsive field is activated by a robot only when it is on a collision path with other mobile robots or stationary obstacles. By analysing the kinematics-based engagement dynamics in polar coordinates, it is shown that a cooperative robot is able to avoid collisions with non-cooperating robots, such as stationary and constant velocity robots, as well as those actively seeking to collide with it. Conditions on the PF parameters are identified that ensure collision avoidance for all cases. Experimental results acquired using a mobile robot platform support the theoretical contributions
    • …
    corecore