34 research outputs found

    Integriertes Werkstückinformationsmodell zur Ausprägung werkstückindividueller Fertigungszustände

    Get PDF
    Durch die Digitalisierung und die Vernetzung der Fertigung werden Werkstücke zu Informationsträgern. In der Vision der werkstückgetriebenen Fertigung steuern sie eigenständig ihre individuelle Herstellung. Das durchgängige Engineering dieser Werkstücke erfordert die Entwicklung leistungsfähiger Methoden und Werkzeuge. Insbesondere die durchgängige Informationsverarbeitung in den CAx-Prozessketten von der Produktentwicklung bis in die Fertigung wird derzeit nicht ausreichend sichergestellt. Ein durchgängig nutzbares, digitales Informationsmodell zur Ausprägung von werkstückindividuellen Fertigungszuständen in der Fertigung existiert bislang nicht. Das entwickelte Konzept stellt eine Vorgehensweise vor, um diese Lücke in der CAx-Prozesskette zu schließen. Es spezifiziert dazu die digitale Repräsentation des integrierten Werkstückinformationsmodells, welches die geplanten mit den realisierten Fertigungszuständen über webbasierte Ansätze verknüpft. Merkmale und Verhalten werden dazu in der digitalen Repräsentation des 3D-Produktmodells durch semantische Annotationen gekennzeichnet und im Ablaufarbeitsplan zu definierten Fertigungszuständen abgeleitet. Die daraus entstehende Werkstückschablone bildet die informationstechnischen Vorgaben für die Ausprägung werkstückindividueller Fertigungszustände. Während der Fertigung werden dann die Informationen zum realisierten, individuellen Fertigungszustand eines einzelnen Werkstücks in der Werkstückschablone erfasst und webbasiert mit den Produktdaten abgeglichen. Die Auswertung der Werkstückschablone stellt dem Werker in der Fertigung eine Entscheidungsgrundlage bereit, um die Herstellungsprozesse werkstückindividuell im Sinne der werkstückgetriebenen Fertigung zu steuern. Die Tragfähigkeit des Konzepts wurde anhand eines repräsentativen Anwendungsbeispiels erfolgreich nachgewiesen. Das dazu prototypisch implementierte Assistenzsystem APIZ vernetzt über REST-konforme Webdienste Werkstücke als Informationsträger mit dem 3D-CAD-Autorensystem NX

    Wissenschaft und Innovation: Wissenschaftsforschung Jahrbuch 2009

    Get PDF
    Technologische Innovationen sind kreative Reaktionen auf Veränderungen des Bedarfs an neuer Technik. Sie bilden ein System zur Durchsetzung des Neuen in einer technologisch ausgerichteten Zukunftswelt und erzeugen einen permanenten Druck zum Fortschritt. Eine Welt ohne technologische Innovationen wird es nicht geben. Sie dienen der Sicherung unseres Wohlstandes und bedürfen einer vielseitigen wissenschaftlichen Begleitforschung. Dabei werden Innovationsfähigkeiten in der Erwartung entwickelt, dass sich kreative Ideen als Innovationen auf dem Weltmarkt durchsetzten. Die zukünftige Gesellschaft wird auf das Leistungsvermögen ihrer industriellen Arbeitskultur angewiesen sein. Eine Steigerung des Arbeitsbedarfs kann nur durch Wachstum des industriellen Innovationspotenzials erreicht werden. Die Gesellschaft für Wissenschaftsforschung hat sich dieser Fragestellung angenommen und sie im Rahmen ihrer Jahrestagung im Produktionstechnischen Zentrum der Technischen Universität Berlin am 27. und 28. März 2009 unter dem Thema „Wissenschaft und Innovation“ analysiert und diskutiert. Dabei ist es gelungen, theoretische Überlegungen mit historischen und aktuellen Fakten zu verbinden. Die Ergebnisse dieser Tagung werden in diesem Jahrbuch der Gesellschaft für Wissenschaftsforschung dem interessierten Leser vorgestellt.Peer Reviewe

    Model-based condition and process monitoring based on socio-cyber-physical systems

    Get PDF
    Die produzierende Industrie strebt im Rahmen der vierten industriellen Revolution, Industrie 4.0, die Optimierung der klassischen Zielgrößen Qualität, Kosten und Zeit sowie Ressourceneffizienz, Flexibilität, Wandlungsfähigkeit und Resilienz in globalen, volatilen Märkten an. Im Mittelpunkt steht die Entwicklung von Smart Factories, in denen sich relevante Objekte, Produktions-, Logistik- und Informationssysteme sowie der Mensch vernetzen. Cyber-physische Systeme (CPS) tragen als sensorisierte und aktorisierte, resiliente und intelligente Gesamtsysteme dazu bei, Produktionsprozesse und -maschinen sowie die Produktqualität zu kontrollieren. Vordergründig wird die technische Komplexität von Produktionssystemen und damit auch zugehöriger Instandhaltungsprozesse durch die Anforderungen an deren Wandlungsfähigkeit und den zunehmenden Automatisierungsgrad ansteigen. Heraus-forderungen bei der Entwicklung und Implementierung von CPS liegen in fehlenden Interoperabilitäts- und Referenzarchitekturkonzepten sowie der unzureichend definierten Interaktion von Mensch und CPS begründet. Sozio-cyber-physische Systeme (Sozio-CPS) fokussieren die bidirektionale Interaktion von Mensch und CPS und adressieren diese Problemstellung. Gegenstand und Zielstellung dieser Dissertationsschrift ist die Definition von Sozio-CPS in der Domäne der Zustands- und Prozessüberwachung von Smart Factories. Untersucht werden dabei Nutzungsszenarien von Sozio-CPS, die ganzheitliche Formulierung von Systemarchitekturen sowie die Validierung der entwickelten Lösungsansätze in industriellen Anwendungsszenarien. Eine erfolgreiche Umsetzung von Sozio-CPS in drei heterogenen Validierungsszenarien beweist die Korrektheit und Anwendbarkeit der Lösungsansätze.Within the scope of the fourth industrial revolution, Industry 4.0, the manufacturing industry is trying to optimize the traditional target figures of quality, costs and time as well as resource efficiency, flexibility, adaptability and resilience in volatile global markets. The focus is on the development of smart factories, in which relevant objects and humans are interconnected . Cyber-physical systems (CPS) are used as sensorized and actuatorized, resilient and intelligent overall systems to control production processes, machines and product quality . The technical complexity of production systems and their associated maintenance processes are rising due to the demands on their adaptability and the increasing automation. Challenges in the development and implementation of CPS include the lack of interoperability and reference architecture concepts as well as the insufficiently defined interaction of people and CPS. Socio-cyber-physical systems (Socio-CPS) focus on bidirectional interaction of humans and CPS to address this problem. The scope and objective of this dissertation is to define Socio-CPS in the condition and process monitoring of smart factories. This dissertation utilizes scenarios of Socio-CPS, holistically defines system architectures and validates the solutions developed in industrial applications. The successful implementation of Socio-CPS in three heterogeneous validation scenarios proves the correctness and applicability of the solutions

    Modellgestützter Entwurf von Feldgeräteapplikationen

    Get PDF
    Die Entwicklung von Feldgeräten ist ein äußerst komplexer Vorgang, welcher auf vielen Vorrausetzungen aufsetzt, diverse Anforderungen und Randbedingungen mitbringt und bisher wenig beachtet und veröffentlicht wurde. Angesichts der fortschreitenden Digitalisierung drängen immer mehr Anbieter auf den Automatisierungsmarkt. So sind aktuell zunehmend Technologien und Ansätze aus dem Umfeld des Internet of Things im Automatisierungsbereich zu finden. Diese Ansätze reichen von Sensoren ohne die in der Industrie üblichen Beschreibungen bis hin zu Marktplätzen, auf denen Integratoren und Anwender Softwareteile für Anlagen kaufen können. Für die neuen Anbieter, die häufig nicht aus dem klassischen Automatisierungsgeschäft kommen, sind die bisher bestehenden Modelle, Funktionalitäten, Profile und Beschreibungsmittel nicht immer leicht zu verwenden. So entstehen disruptive Lösungen auf Basis neu definierter Spezifikationen und Modelle. Trotz dieser Disruptivität sollte es das Ziel sein, die bewährten Automatisierungsfunktionen nicht neu zu erfinden, sondern diese effektiv und effizient in Abhängigkeit der Anforderungen auf unterschiedlichen Plattformen zu verwenden. Dies schließt ihre flexible Verteilung auf heterogene vernetzte Ressourcen explizit ein. Dabei können die Plattformen sowohl klassische Feldgeräte und Steuerungen sein, als auch normale Desktop-PCs und IoT-Knoten. Ziel dieser Arbeit ist es, eine Werkzeugkette für den modellbasierten Entwurf von Feldgeräteapplikationen auf Basis von Profilen und damit für den erweiterten Entwurf von verteilten Anlagenapplikationen zu entwickeln. Dabei müssen die verschiedenen Beschreibungsmöglichkeiten evaluiert werden, um diese mit detaillierten Parameter- und Prozessdatenbeschreibungen zu erweitern. Außerdem sollen modulare Konzepte genutzt und Vorbereitungen für die Verwendung von Semantik im Entwurfsprozess getroffen werden. In Bezug auf den Geräteengineeringprozess soll der Anteil des automatisierten Geräteengineerings erweitert werden. Dies soll zu einer Flexibilisierung der Geräteentwicklung führen, in der die Verschaltung der funktionalen Elemente beim Endkunden erfolgt. Auch das Deployment von eigenen funktionalen Elementen auf die Geräte der Hersteller soll durch den Endkunden möglich werden. Dabei wird auch eine automatisierte Erstellung von Gerätebeschreibungen benötigt. Alle diese Erweiterungen ermöglichen dann den letzten großen Schritt zu einer verteilten Applikation über heterogene Infrastrukturen. Dabei sind die funktionalen Elemente nicht nur durch die Gerätehersteller verteilbar, sondern diese können auch auf verschiedenen Plattformen unterschiedlicher Gerätehersteller verwendet werden. Damit einher geht die für aktuelle Entwicklungen wie Industrie 4.0 benötigte geräteunabhängige Definition von Funktionalität. Alle im Engineering entstandenen Informationen können dabei auf den unterschiedlichen Ebenen der Automatisierungspyramide und während des Lebenszyklus weiterverwendet werden. Eine Integration diverser Gerätefamilien außerhalb der Automatisierungstechnik wie z. B. IoT-Geräte und IT-Geräte ist damit vorstellbar. Nach einer Analyse der relevanten Techniken, Technologien, Konzepte, Methoden und Spezifikationen wurde eine Werkzeugkette für den modellgestützten Entwurf von Feldgeräten entwickelt und die benötigten Werkzeugteile und Erweiterungen an bestehenden Beschreibungen diskutiert. Dies Konzept wurde dann auf den verteilten Entwurf auf heterogener Hardware und heterogenen Plattformen erweitert, bevor beide Konzepte prototypisch umgesetzt und evaluiert wurden. Die Evaluation erfolgt an einem zweigeteilten Szenario aus der Sicht eines Geräteherstellers und eines Integrators. Die entwickelte Lösung integriert Ansätze aus dem Kontext von Industrie 4.0 und IoT. Sie trägt zu einer vereinfachten und effizienteren Automatisierung des Engineerings bei. Dabei können Profile als Baukasten für die Funktionalität der Feldgeräte und Anlagenapplikationen verwendet werden. Bestehende Beschränkungen im Engineering werden somit abgeschwächt, so dass eine Verteilung der Funktionalität auf heterogene Hardware und heterogene Plattformen möglich wird und damit zur Flexibilisierung der Automatisierungssysteme beiträgt.The development of field devices is a very complex procedure. Many preconditions need to be met. Various requirements and constrains need to be addressed. Beside this, there are only a few publications on this topic. Due to the ongoing digitalization, more and more solution providers are entering the market of the industrial automation. Technologies and approaches from the context of the Internet of Things are being used more and more in the automation domain. These approaches range from sensors without the typical descriptions from industry up to marketplaces where integrators and users can buy software components for plants. For new suppliers, who often do not come from the classical automation business, the already existing models, functionalities, profiles, and descriptions are not always easy to use. This results in disruptive solutions based on newly defined specifications and models. Despite this disruptiveness, the aim should be to prevent reinventing the proven automation functions, and to use them effectively, and efficiently on different platforms depending on the requirements. This explicitly includes the flexible distribution of the automation functions to heterogeneous networked resources. The platforms can be classical field devices and controllers, as well as normal desktop PCs and IoT nodes. The aim of this thesis is to develop a toolchain for the model-based design of field device applications based on profiles, and thus also suitable for the extended design of distributed plant applications. Therefore, different description methods are evaluated in order to enrich them with detailed descriptions of parameters and process data. Furthermore, c oncepts of modularity will also be used and preparations will be made for the use of semantics in the design process. With regard to the device engineering process, the share of automated device engineering will be increased. This leads to a flexibilisation of the device development, allowing the customer to perform the networking of the functional elements by himself. The customer should also be able to deploy his own functional elements to the manufacturers' devices. This requires an automated creation of device descriptions. Finally, all these extensions will enable a major step towards using a distributed application over heterogeneous infrastructures. Thus, the functional elements can not only be distributed by equipment manufacturers, but also be distributed on different platforms of different equipment manufacturers. This is accompanied by the device-independent definition of functionality required for current developments such as Industry 4.0. All information created during engineering can be used at different levels of the automation pyramid and throughout the life cycle. An integration of various device families from outside of Automation Technology, such as IoT devices and IT devices, is thus conceivable. After an analysis of the relevant techniques, technologies, concepts, methods, and specifications a toolchain for the model-based design of field devices was developed and the required tool parts, and extensions to existing descriptions were discussed. This concept was then extended to the distributed design on heterogeneous hardware and heterogeneous platforms. Finally, both concepts were prototypically implemented and evaluated. The evaluation is based on a two-part scenario from both the perspective of a device manufacturer, and the one of an integrator. The developed solution integrates approaches from the context of Industry 4.0 and IoT. It contributes to a simplified, and more efficient automation of engineering. Within this context, profiles can be used as building blocks for the functionality of field devices, and plant applications. Existing limitations in engineering are thus reduced, so that a distribution of functionality across heterogeneous hardware and heterogeneous platforms becomes possible and contributing to the flexibility of automation systems

    Beitrag zur voxelbasierten Simulation des fünfachsigen NC-Fräsens

    Get PDF
    Die Simulationstechnik wird als Hilfsmittel zur Beherrschung der drei- und fünfachsigen NC-Fräsbearbeitung eingesetzt. Gewöhnlich wird die Aktualisierung des simulierten Werkstücks entweder im Bildraum des Werkstücks oder geometrisch im Objektraum durchgeführt. Die vollständige Aktualisierung des simulierten Werkstücks fordert jedoch nur eine geometrische Lösung. Im vorliegenden Forschungsbericht wird der Ansatz der voxelbasierten fünfachsigen NC-Simulation entwickelt. Die Grundlage für den Aufbau des Simulationssystems ist der am IPK Berlin entwickelte 3D-Kernmodellierer des Virtual Clay Modelling Systems. Dieser ermöglicht die Modellierung und die Aktualisierung von komplizierten Werkstücken und Zerspanungsvolumen in der drei- und fünfachsigen NC-Simulation auf Rechenanlagen. Das simulierte Werkstück wird rechnerintern diskret mit einem Voxelmodell dargestellt. Die dadurch eingeführten NC-Simulationsfehler werden unter Berücksichtigung des eingesetzten Fräsers kontrolliert. Eine voxelbasierte Methode zur Gestaltung von Zerspanungsvolumen der diversen Werkzeuge wie zylindrische Fräser, Torus-, zylindrische Gesenk-, Kugelkopf-, Fass-, Kegel- und kegelige Gesenkfräser wurde entwickelt. Der Vorteil dieser Methode liegt darin, dass aufgrund der diskreten Datenstruktur des Voxelmodells und der damit ermöglichten Abbildung von beliebigen Formen keinerlei Einschränkungen zur Modellierung der Zerspanungsvolumen der diversen Fräsertypen gegeben sind. Die Materialverletzungen und verbliebenen Restmaterialien auf dem simulierten Werkstück können im 3D-Raum zur Bewertung der Qualität der NC-Programme ermittelt werden. Eine effektive Optimierung der NC-Programme in der Fertigungsvorbereitung kann durchgeführt werden. Zur Beschleunigung der Werkstückaktualisierung wurden ausgehend von den Eigenschaften des Voxelmodells die entsprechenden Maßnahmen getroffen. Mit der vorgestellten Methode wird ein wichtiger Beitrag zur drei- und fünfachsigen Simulation des NC-Fräsens geleistet. Damit können die NC-Programme für die drei- und fünfachsige NC-Fräsbearbeitung verifiziert, optimiert und die Prozessqualität vorab sichergestellt werden

    Ein integrierter Ansatz zur Analyse und Bewertung von Geschäftsprozessen

    Get PDF

    Innovationspotentiale in der rechnerintegrierten Produktion durch wissensbasierte Systeme

    Get PDF
    Die Realisierung einer Rechnergeführten Fabrik unter dem Schlagwort CIM ist eine der größten Herausforderungen für die industrielle Produktionstechnik. Komplexe Informations- und Automatisierungssysteme steuern und überwachen die Fabrik der Zukunft. Doch die konventionelle Informations- und Datenverarbeitung erreicht ihre Grenzen dort, wo Wissen und Erfahrung zur Problemlösung im Vordergrund steht, und wo komplexe, unstrukturierte und nicht algorithmierbare Zusammenhänge angetroffen werden. Hier eröffnen die Methoden der Künstlichen Intelligenz und Wissensverarbeitung vielfältig neue Möglichkeiten. Unter diesen Randbedingungen will die vorliegende Arbeit Innovationspotentiale in der Rechnerintegrierten Produktion durch den Einsatz wissensbasierter Systeme erschließen. Dazu werden eingangs die grundsätzlichen Methoden und Hilfsmittel der Wissensverarbeitung erläutert. Diese Ausführungen erstrecken sich auf den Wissensbegriff selbst, auf die Methoden zur Wissensrepräsentation, Manipulation und auch Akquisition. Eine grobe Klassifizierung der Softwarehilfsmittel in Programmiersprachen und Werkzeugsysteme schließt sich an. Das nächste Kapitel beschäftigt sich mit dem Einsatz wissensbasierter Systeme in der Produktion allgemein. Erfolgreiche Systeme und interessante Prototypen aus den Anwendungsgebieten Diagnose, Arbeitsplanung, Konstruktion und Simulation werden vorgestellt. Die Wissensverarbeitung erfordert eine neue Qualifikation an Engineeringleistung. Die Aufgaben eines Wissensingenieurs werden im Zusammenhang mit dem Entwicklungsprozeß von wissensbasierten Systemen erläutert. Im anschließenden Kapitel wird ein wissensbasiertes Rahmensystem (WWS) für die Lösung von Planungs- und Konfigurationsaufgaben vorgestellt. Es besteht aus Komponenten für den Dialog, für die Wissensrepräsentation, für die Problemlösung und für den Wissenserwerb. Ein ereignisorientiertes Simulationssystem ist in die Problemlösungskomponente voll integriert. Mit Hilfe dieser logischen und programmtechnischen Integration von Konfigurations- und Simulationswerkzeugen ist es erstmals gelungen, völlig neue Möglichkeiten der Optimierung von Planungstätigkeiten in einem ganzheitlichen und wissensbasierten Ansatz zu erschließen. Innerhalb der industriellen Produktion gilt die Montagetechnik als weitgehend unerschlossenes Rationalisierungspotential. Als exemplarische Anwendung des wissensbasierten Werkzeugsystems (WWS) wurde das Expertensystem MOPLAN zur Planung von Montageanlagen implementiert. Als einziges System seiner Art ist es hardware- und softwareseitig voll in ein CIM-Konzept für die Montage integriert und kommuniziert mit einem dreidimensionalen Modellierer (ROMULUS). Damit steht der Montageplanung erstmals ein rechnergestütztes Werkzeug zur Verfügung, das für einen Großteil der Aufgaben bei der Grobplanung eingesetzt werden kann. Das letzte Kapitel beschäftigt sich mit alternativen Einsatzmöglichkeiten für das wissensbasierte Werkzeugsystem WWS. Hier ist in erster Linie die Planung von produktionstechnischen Anlagen im allgemeinen und die Planung von Flexiblen Fertigungssystemen im speziellen zu nennen. Aber auch zur Planung von Fertigungsabläufen und Fertigungsaufträgen kann das Werkzeug eingesetzt werden. Für die implizite offline-Programmierung von Industrierobotern wird hierzu ein Beispiel gegeben. Die vorliegende Arbeit zeigt das Spektrum der Einsatzmöglichkeiten wissensbasierter Systeme in einer Rechnerintegrierten Produktion auf. Angefangen bei der Konstruktion, über die Fertigungsplanung und -steuerung, bis hin zur Diagnose können mit Hilfe von wissensbasierten Konzepten vielfältige Innovationspotentiale erschlossen werden. Es wird deutlich, daß die Wissensverarbeitung eine wesentliche Komponente in der Fabrik der Zukunft darstellt. Mit dem Rahmensystem WWS und dem Expertensystem MOPLAN ist es gelungen, breit einsetzbare Werkzeuge als Basis für viele weiterführende Arbeiten im Bereich der Planung und Konfiguration zu schaffen. Damit wird auch ein Beitrag dazu geleistet, die Wissensverarbeitung in Forschung und Lehre zu etablieren.The realization of a computer-controlled factory under the catchphrase CIM is one of the greatest challenges for industrial production technology. Complex information and automation systems control and monitor the factory of the future. But conventional information and data processing reaches its limits where knowledge and experience are the focus of problem-solving and where complex, unstructured and non-algorithmic relationships are encountered. The methods of artificial intelligence and knowledge processing open up a variety of new possibilities here. Under these boundary conditions, the present work aims to develop innovation potential in computer-integrated production through the use of knowledge-based systems. To this end, the basic methods and tools of knowledge processing are explained. These explanations extend to the concept of knowledge itself, to the methods for representing knowledge, manipulation and also acquisition. This is followed by a rough classification of software tools in programming languages and tool systems. The next chapter deals with the use of knowledge-based systems in production in general. Successful systems and interesting prototypes from the fields of diagnosis, work planning, construction and simulation are presented. Knowledge processing requires a new qualification in engineering performance. The tasks of a knowledge engineer are explained in connection with the development process of knowledge-based systems. In the following chapter, a knowledge-based framework system (WWS) for the solution of planning and configuration tasks is presented. It consists of components for dialogue, for representing knowledge, for solving problems and for acquiring knowledge. An event-oriented simulation system is fully integrated in the problem-solving component. With the help of this logical and technical integration of configuration and simulation tools, it was possible for the first time to open up completely new possibilities for optimizing planning activities in a holistic and knowledge-based approach. In industrial production, assembly technology is considered a largely untapped rationalization potential. The MOPLAN expert system for planning assembly systems was implemented as an exemplary application of the knowledge-based tool system (WWS). As the only system of its kind, it is fully integrated in terms of hardware and software into a CIM concept for assembly and communicates with a three-dimensional modeller (ROMULUS). For the first time, assembly planning now has a computer-aided tool that can be used for a large part of the rough planning tasks. The last chapter deals with alternative uses for the knowledge-based tool system WWS. The planning of production engineering systems in general and the planning of flexible manufacturing systems in particular should be mentioned here. The tool can also be used to plan production processes and production orders. An example is given for the implicit offline programming of industrial robots. The present work shows the spectrum of possible uses of knowledge-based systems in computer-integrated production. Starting with the construction, through the production planning and control, up to the diagnosis, knowledge-based concepts can be used to open up a wide range of innovation potential. It becomes clear that knowledge processing is an essential component in the factory of the future. With the WWS frame system and the MOPLAN expert system, it has been possible to create widely applicable tools as the basis for many further work in the area of planning and configuration. This also makes a contribution to establishing knowledge processing in research and teaching
    corecore