477 research outputs found

    Optimal Mission Planning of Autonomous Mobile Agents for Applications in Microgrids, Sensor Networks, and Military Reconnaissance

    Get PDF
    As technology advances, the use of collaborative autonomous mobile systems for various applications will become evermore prevalent. One interesting application of these multi-agent systems is for autonomous mobile microgrids. These systems will play an increasingly important role in applications such as military special operations for mobile ad-hoc power infrastructures and for intelligence, surveillance, and reconnaissance missions. In performing these operations with these autonomous energy assets, there is a crucial need to optimize their functionality according to their specific application and mission. Challenges arise in determining mission characteristics such as how each resource should operate, when, where, and for how long. This thesis explores solutions in determining optimal mission plans around the applications of autonomous mobile microgrids and resource scheduling with UGVs and UAVs. Optimal network connections, energy asset locations, and cabling trajectories are determined in the mobile microgrid application. The resource scheduling applications investigate the use of a UGV to recharge wireless sensors in a wireless sensor network. Optimal recharging of mobile distributed UAVs performing reconnaissance missions is also explored. With genetic algorithm solution approaches, the results show the proposed methods can provide reasonable a-priori mission plans, considering the applied constraints and objective functions in each application. The contributions of this thesis are: (1) The development and analysis of solution methodologies and mission simulators for a-priori mission plan development and testing, for applications in organizing and scheduling power delivery with mobile energy assets. Applying these methods results in (2) the development and analysis of reasonable a-priori mission plans for autonomous mobile microgrids/assets, in various scenarios. This work could be extended to include a more diverse set of heterogeneous agents and incorporate dynamic loads to provide power to

    Belief Space Scheduling

    Get PDF
    This thesis develops the belief space scheduling framework for scheduling under uncertainty in Stochastic Collection and Replenishment (SCAR) scenarios. SCAR scenarios involve the transportation of a resource such as fuel to agents operating in the field. Key characteristics of this scenario are persistent operation of the agents, and consideration of uncertainty. Belief space scheduling performs optimisation on probability distributions describing the state of the system. It consists of three major components---estimation of the current system state given uncertain sensor readings, prediction of the future state given a schedule of tasks, and optimisation of the schedule of the replenishing agents. The state estimation problem is complicated by a number of constraints that act on the state. A novel extension of the truncated Kalman Filter is developed for soft constraints that have uncertainty described by a Gaussian distribution. This is shown to outperform existing estimation methods, striking a balance between the high uncertainty of methods that ignore the constraints and the overconfidence of methods that ignore the uncertainty of the constraints. To predict the future state of the system, a novel analytical, continuous-time framework is proposed. This framework uses multiple Gaussian approximations to propagate the probability distributions describing the system state into the future. It is compared with a Monte Carlo framework and is shown to provide similar discrimination performance while computing, in most cases, orders of magnitude faster. Finally, several branch and bound tree search methods are developed for the optimisation problem. These methods focus optimisation efforts on earlier tasks within a model predictive control-like framework. Combined with the estimation and prediction methods, these are shown to outperform existing approaches

    Design Experiences on Single and Multi Radio Systems in Wireless Embedded Platforms

    Get PDF
    The progress of radio technology has made several flavors of radio available on the market.Wireless sensor network platform designers have used these radios to build a variety of platforms. Withnew applications and different types of radios on wireless sensing nodes, it is often hard to interconnectdifferent types of networks. Hence, often additional radios have to be integrated onto existingplatforms or new platforms have to be built. Additionally, the energy consumption of these nodes have to be optimized to meetlifetime requirements of years without recharging.In this thesis, we address two issues of single and multi radio platform designfor wireless sensor network applications - engineering issues and energy optimization.We present a set of guiding principles from our design experiences while building 3 real life applications,namely asset tracking, burglar tracking and finally in-situ psychophysiological stress monitoring of human subjects in behavioral studies.In the asset tracking application, we present our design of a tag node that can be hidden inside valuable personal assets such asprinters or sofas in a home. If these items are stolen, a city wide anchor node infrastructure networkwould track them throughout the city. We also present our design for the anchor node.In the burglar tracking application, we present the design of tag nodes and the issueswe faced while integrating it with a GSM radio. Finally, we discuss our experiencesin designing a bridge node, that connects body worn physiological sensorsto a Bluetooth enabled mobile smartphone. We present the software framework that acts as middleware toconnect to the bridge, parse the sensor data, and send it to higher layers of the softwareframework.We describe 2 energy optimization schemes that are used in the Asset Tracking and the Burglar Tracking applications, that enhance the lifetime of the individual applications manifold.In the asset tracking application,we design a grouping scheme that helps increase reliability of detection of the tag nodes at theanchor nodes while reducing the energy consumption of the group of tag nodes travelling together.We achieve an increase of 5 times improvement in lifetime of the entire group. In the Burglar Tracking application, weuse sensing to determine when to turn the GSM radio on and transmit data by differentiatingturns and lane changes. This helps us reduce the number of times the GSM radio is woken up, thereby increasing thelifetime of the tag node while it is being tracked. This adds 8 minutes of trackablelifetime to the burglar tracking tag node. We conclude this thesis by observing the futuretrends of platform design and radio evolution

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Speed control of mobile chargers serving wireless rechargeable networks

    Get PDF
    Wireless rechargeable networks have attracted increasing research attention in recent years. For charging service, a mobile charger is often employed to move across the network and charge all network nodes. To reduce the charging completion time, most existing works have used the “move-then-charge” model where the charger first moves to specific spots and then starts charging nodes nearby. As a result, these works often aim to reduce the moving delay or charging delay at the spots. However, the charging opportunity on the move is largely overlooked because the charger can charge network nodes while moving, which as we analyze in this paper, has the potential to greatly reduce the charging completion time. The major challenge to exploit the charging opportunity is the setting of the moving speed of the charger. When the charger moves slow, the charging delay will be reduced (more energy will be charged during the movement) but the moving delay will increase. To deal with this challenge, we formulate the problem of delay minimization as a Traveling Salesman Problem with Speed Variations (TSP-SV) which jointly considers both charging and moving delay. We further solve the problem using linear programming to generate (1) the moving path of the charger, (2) the moving speed variations on the path and (3) the stay time at each charging spot. We also discuss possible ways to reduce the calculation complexity. Extensive simulation experiments are conducted to study the delay performance under various scenarios. The results demonstrate that our proposed method achieves much less completion time compared to the state-of-the-art work

    Decentralized Multi-Charger Coordination for Wireless Rechargeable Sensor Networks

    Get PDF
    International audienceWireless charging is a promising technology for provisioning dynamic power supply in wireless rechargeable sensor networks (WRSNs). The charging equipment can be carried by some mobile nodes to enhance the charging flexibility. With such mobile chargers (MCs), the charging process should simultaneously address the MC scheduling, the moving and charging time allocation, while saving the total energy consumption of MCs. However, the efficient solutions that jointly solve those challenges are generally lacking in the literature. First, we investigate the multi-MC coordination problem that minimizing the energy expenditure of MCs while guaranteeing the perpetual operation of WRSNs, and formulate this problem as a mixed-integer linear program (MILP). Second, to solve this problem efficiently, we propose a novel decentralized method which is based on Benders decomposition. The multi-MC coordination problem is then decomposed into a master problem (MP) and a slave problem (SP), with the MP for MC scheduling and the SP for MC moving and charging time allocation. The MP is being solved by the base station (BS), while the SP is further decomposed into several sub-SPs and being solved by the MCs in parallel. The BS and MCs coordinate themselves to decide an optimal charging strategy. The convergence of proposed method is analyzed theoretically. Simulation results demonstrate the effectiveness and scalability of the proposed method

    UAVino

    Get PDF
    UAVino is a drone solution that uses aerial imagery to determine the overall plant health and water content of vineyards. In general, the system focuses on automating crop inspection by taking aerial imagery of a vineyard, conducting post-processing, and outputting an easily interpreted map of the vineyard\u27s overall health. The project\u27s key innovation is an auto-docking system that allows the drone to automatically return to its launch point and recharge in order to extend mission duration. Long term, UAVino is envisioned as a multi-year, interdisciplinary project involving both the Santa Clara University Robotics Systems Laboratory and local wineries in order to develop a fully functional drone agricultural inspection service

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Exploring the drive-by sensing power of bus fleet through active scheduling

    Full text link
    Vehicle-based mobile sensing (a.k.a drive-by sensing) is an important means of surveying urban environment by leveraging the mobility of public or private transport vehicles. Buses, for their extensive spatial coverage and reliable operations, have received much attention in drive-by sensing. Existing studies have focused on the assignment of sensors to a set of lines or buses with no operational intervention, which is typically formulated as set covering or subset selection problems. This paper aims to boost the sensing power of bus fleets through active scheduling, by allowing instrumented buses to circulate across multiple lines to deliver optimal sensing outcome. We consider a fleet consisting of instrumented and normal buses, and jointly optimize sensor assignment, bus dispatch, and intra- or inter-line relocations, with the objectives of maximizing sensing quality and minimizing operational costs, while serving all timetabled trips. By making general assumptions on the sensing utility function, we formulate the problem as a nonlinear integer program based on a time-expanded network. A batch scheduling algorithm is developed following linearization techniques to solve the problem efficiently, which is tested in a real-world case study in Chengdu, China. The results show that the proposed scheme can improve the sensing objective by 12.0%-20.5% (single-line scheduling) and 16.3%-32.1% (multi-line scheduling), respectively, while managing to save operational costs by 1.0%. Importantly, to achieve the same level of sensing quality, we found that the sensor investment can be reduced by over 33% when considering active bus scheduling. Comprehensive comparative and sensitivity analyses are presented to generate managerial insights and recommendations for practice.Comment: 32 pages, 13 figures, 8 table
    • …
    corecore