31 research outputs found

    DESIGN OF RELIABLE AND SUSTAINABLE WIRELESS SENSOR NETWORKS: CHALLENGES, PROTOCOLS AND CASE STUDIES

    Get PDF
    Integrated with the function of sensing, processing, and wireless communication, wireless sensors are attracting strong interest for a variety of monitoring and control applications. Wireless sensor networks (WSNs) have been deployed for industrial and remote monitoring purposes. As energy shortage is a worldwide problem, more attention has been placed on incorporating energy harvesting devices in WSNs. The main objective of this research is to systematically study the design principles and technical approaches to address three key challenges in designing reliable and sustainable WSNs; namely, communication reliability, operation with extremely low and dynamic power sources, and multi-tier network architecture. Mathematical throughput models, sustainable WSN communication strategies, and multi-tier network architecture are studied in this research to address these challenges, leading to protocols for reliable communication, energy-efficient operation, and network planning for specific application requirements. To account for realistic operating conditions, the study has implemented three distinct WSN testbeds: a WSN attached to the high-speed rotating spindle of a turning lathe, a WSN powered by a microbial fuel cell based energy harvesting system, and a WSN with a multi-tier network architecture. With each testbed, models and protocols are extracted, verified and analyzed. Extensive research has studied low power WSNs and energy harvesting capabilities. Despite these efforts, some important questions have not been well understood. This dissertation addresses the following three dimensions of the challenge. First, for reliable communication protocol design, mathematical throughput or energy efficiency estimation models are essential, yet have not been investigated accounting for specific application environment characteristics and requirements. Second, for WSNs with energy harvesting power sources, most current networking protocols do not work efficiently with the systems considered in this dissertation, such as those powered by extremely low and dynamic energy sources. Third, for multi-tier wireless network system design, routing protocols that are adaptive to real-world network conditions have not been studied. This dissertation focuses on these questions and explores experimentally derived mathematical models for designing protocols to meet specific application requirements. The main contributions of this research are 1) for industrial wireless sensor systems with fast-changing but repetitive mobile conditions, understand the performance and optimal choice of reliable wireless sensor data transmission methods, 2) for ultra-low energy harvesting wireless sensor devices, design an energy neutral communication protocol, and 3) for distributed rural wireless sensor systems, understand the efficiency of realistic routing in a multi-tier wireless network. Altogether, knowledge derived from study of the systems, models, and protocols in this work fuels the establishment of a useful framework for designing future WSNs

    Remote vital signs monitoring based on wireless sensor networks

    Get PDF
    Tese de doutoramento em LĂ­deres para as IndĂșstrias TecnolĂłgicasGovernmental and private institutions face a major challenge to provide quality health care to a population consisting of a growing number of elderly and chronically ill patients. According to the World Health Organization, in 2006, the total global health expenditures exceeded US$ 4 trillion and are rising in the majority of countries including Portugal which, during 2006, expended 9.9% of its gross domestic product in health care. The use of remote vital signs monitoring systems increases the probability of early detection of risky situations, allows frequent monitoring of in-patients, elderly and chronically ill patients, and streamlines the work of health professionals. However, at present, these systems are expensive, complex and employ obtrusive sensors, which limit their application to intensive care units and cardiac intermediate care units. This work is part of a project that aims to design, prototype and evaluate a remote vital signs monitoring system based on the IEEE 802.15.4 and ZigBee protocols, which allow the development of small low-power sensors. The prototype system comprises electrocardiogram/heart rate and axillary thermometer sensors, networking devices and three informatics applications that collect, process, and exhibit medical data. The wireless sensors, the networking devices and one of the applications were developed under this work. Additionally, the wireless sensor network was evaluated through simulations at the MAC level and experimental and field tests. Field tests were performed at an in-patient floor of Hospital Privado de GuimarĂŁes, a Portuguese hospital. Finally, questionnaires were used to measure the satisfaction of users and catalog their critics and suggestions for improvement. Simulations considered different topologies, operation modes and a crescent number of sensors and hops. Experimental and field tests confirmed most of the results obtained by simulations, but revealed that networks which did not assign transmission time slots to electrocardiogram sensors were unable to maintain a high delivery ratio. Contention between devices, aggravated by the inability of routers in receiving incoming packets during backoff, and collisions between packets generated by hiddennodes were responsible for most message losses. On the other hand, beacon-enabled star IEEE 802.15.4 networks that assigned a guaranteed time slot to sensors were able to maintain a very high delivery ratio. In contrast, these networks are restricted in terms of the coverage area and the number of sensors. Also, field tests showed that under low traffic scenarios ZigBee nonbeacon-enabled networks can achieve a high delivery ratio even in presence of a high percentage of hidden-nodes.InstituiçÔes governamentais e privadas enfrentam um grande desafio para prestar cuidados de saĂșde de qualidade a uma população constituĂ­da por um nĂșmero crescente de idosos e doentes crĂłnicos. Segundo a Organização Mundial de SaĂșde, em 2006, a despesa mundial em saĂșde ultrapassou a quantia de 4 bilhĂ”es de dĂłlares americanos e cresce anualmente na maioria dos paĂ­ses, incluindo Portugal, o qual, em 2006, gastou 9,9% do seu produto interno bruto em cuidados de saĂșde. O uso de sistemas de monitorização remota de sinais vitais aumenta a probabilidade de deteção precoce de situaçÔes de risco, permite que doentes internados, idosos ou doentes crĂłnicos sejam frequentemente monitorizados e agiliza o trabalho dos profissionais de saĂșde. No entanto, atualmente, estes sistemas sĂŁo caros e complexos, o que limita a sua aplicação a alguns setores dos hospitais, tais como as unidades de cuidados intensivos e as unidades de cuidados intermĂ©dios na ĂĄrea da cardiologia. O projeto no qual insere-se este trabalho visa a conceção, a prototipagem e a avaliação de um sistema de monitorização remota de sinais vitais com base nos protocolos IEEE 802.15.4 e ZigBee, os quais oferecem a possibilidade de construção de sensores com consumos energĂ©ticos muito baixos e reduzidas dimensĂ”es. O sistema consiste em sensores de eletrocardiograma/frequĂȘncia cardĂ­aca e temperatura axilar, dispositivos de rede e trĂȘs aplicaçÔes que coletam, processam e apresentam o eletrocardiograma e os sinais vitais. No Ăąmbito deste trabalho foram desenvolvidos os sensores sem fios, os dispositivos de rede e uma das aplicaçÔes informĂĄticas. AlĂ©m disso, foi feita a avaliação do desempenho da rede de sensores sem fios atravĂ©s da anĂĄlise de simulaçÔes a nĂ­vel da camada de acesso ao meio (MAC) e de testes de laboratĂłrio e de campo. Os testes de campo da rede de sensores sem fios foram executados em um dos pisos de internamento do Hospital Privado de GuimarĂŁes. Finalmente, foram usados questionĂĄrios para medir a satisfação dos utilizadores e recolher crĂ­ticas e sugestĂ”es de melhoria. As simulaçÔes consideraram diferentes topologias e modos de operação, alĂ©m de um nĂșmero crescente de sensores e saltos. Testes experimentais e de campo confirmaram grande parte dos resultados obtidos por simulação mas, adicionalmente, revelaram que as redes constituĂ­das por vĂĄrios sensores de eletrocardiograma e que nĂŁo reservaram um intervalo de tempo de transmissĂŁo aos sensores nĂŁo foram capazes de manter uma elevada taxa de entrega de mensagens. Perdas de mensagens ocorreram devido a disputas entre sensores pelo acesso ao canal sem fios e devido a ocorrĂȘncia de colisĂ”es de pacotes transmitidos por nĂłs escondidos. Por outro lado, as redes baseadas no protocolo IEEE 802.15.4 que atribuĂ­ram um intervalo de tempo de transmissĂŁo a cada sensor conseguiram manter uma elevada taxa de entrega. Entretanto, essas redes sĂŁo limitadas em termos da ĂĄrea de cobertura e do nĂșmero de sensores. Adicionalmente, durante os testes de campo em cenĂĄrios de trĂĄfego reduzido, as redes ZigBee que nĂŁo empregaram beacons atingiram uma elevada taxa de entrega mesmo na presença de uma grande percentagem de nĂłs escondidos

    Construction, Operation and Maintenance of Network System(Junior Level)

    Get PDF
    This open access book follows the development rules of network technical talents, simultaneously placing its focus on the transfer of network knowledge, the accumulation of network skills, and the improvement of professionalism. Through the complete process from the elaboration of the theories of network technology to the analysis of application scenarios then to the design and implementation of case projects, readers are enabled to accumulate project experience and eventually acquire knowledge and cultivate their ability so as to lay a solid foundation for adapting to their future positions. This book comprises six chapters, which include “General Operation Safety of Network System,” “Cabling Project,” “Hardware Installation of Network System,” “Basic Knowledge of Network System,” “Basic Operation of Network System,” and “Basic Operation and Maintenance of Network System.” This book can be used for teaching and training for the vocational skills certification of network system construction, operation, and maintenance in the pilot work of Huawei’s “1+X” Certification System, and it is also suitable as a textbook for application-oriented universities, vocational colleges, and technical colleges. In the meantime, it can also serve as a reference book for technicians engaged in network technology development, network management and maintenance, and network system integration. As the world’s leading ICT (information and communications technology) infrastructure and intelligent terminal provider, Huawei Technologies Co., Ltd. has covered many fields such as data communication, security, wireless, storage, cloud computing, intelligent computing, and artificial intelligence. Taking Huawei network equipment (routers, switches, wireless controllers, and wireless access points) as the platform, and based on network engineering projects, this book organizes all the contents according to the actual needs of the industry

    Construction, Operation and Maintenance of Network System(Junior Level)

    Get PDF
    This open access book follows the development rules of network technical talents, simultaneously placing its focus on the transfer of network knowledge, the accumulation of network skills, and the improvement of professionalism. Through the complete process from the elaboration of the theories of network technology to the analysis of application scenarios then to the design and implementation of case projects, readers are enabled to accumulate project experience and eventually acquire knowledge and cultivate their ability so as to lay a solid foundation for adapting to their future positions. This book comprises six chapters, which include “General Operation Safety of Network System,” “Cabling Project,” “Hardware Installation of Network System,” “Basic Knowledge of Network System,” “Basic Operation of Network System,” and “Basic Operation and Maintenance of Network System.” This book can be used for teaching and training for the vocational skills certification of network system construction, operation, and maintenance in the pilot work of Huawei’s “1+X” Certification System, and it is also suitable as a textbook for application-oriented universities, vocational colleges, and technical colleges. In the meantime, it can also serve as a reference book for technicians engaged in network technology development, network management and maintenance, and network system integration. As the world’s leading ICT (information and communications technology) infrastructure and intelligent terminal provider, Huawei Technologies Co., Ltd. has covered many fields such as data communication, security, wireless, storage, cloud computing, intelligent computing, and artificial intelligence. Taking Huawei network equipment (routers, switches, wireless controllers, and wireless access points) as the platform, and based on network engineering projects, this book organizes all the contents according to the actual needs of the industry

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesïżœ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore