14,942 research outputs found

    Microdevices for studies of cultured neural networks

    Get PDF
    A cultured network has the advantages that the network is two-dimensional and easily observed, that the biochemical environment can be controlled, and that conventional electrodes as well as extracellular electrodes incorporated into the cultured substrate can be used to selectively stimulate and record from individual neurons in the network. It is possible to study small numbers of connected neurons, from a few to hundreds. This talk will describe two techniques, the multielectrode array and the silicon neurochip, and their application to long-term communication with a network by means of simultaneous recording or stimulation of many neurons

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    The Role of Constraints in Hebbian Learning

    Get PDF
    Models of unsupervised, correlation-based (Hebbian) synaptic plasticity are typically unstable: either all synapses grow until each reaches the maximum allowed strength, or all synapses decay to zero strength. A common method of avoiding these outcomes is to use a constraint that conserves or limits the total synaptic strength over a cell. We study the dynamic effects of such constraints. Two methods of enforcing a constraint are distinguished, multiplicative and subtractive. For otherwise linear learning rules, multiplicative enforcement of a constraint results in dynamics that converge to the principal eigenvector of the operator determining unconstrained synaptic development. Subtractive enforcement, in contrast, typically leads to a final state in which almost all synaptic strengths reach either the maximum or minimum allowed value. This final state is often dominated by weight configurations other than the principal eigenvector of the unconstrained operator. Multiplicative enforcement yields a ā€œgradedā€ receptive field in which most mutually correlated inputs are represented, whereas subtractive enforcement yields a receptive field that is ā€œsharpenedā€ to a subset of maximally correlated inputs. If two equivalent input populations (e.g., two eyes) innervate a common target, multiplicative enforcement prevents their segregation (ocular dominance segregation) when the two populations are weakly correlated; whereas subtractive enforcement allows segregation under these circumstances. These results may be used to understand constraints both over output cells and over input cells. A variety of rules that can implement constrained dynamics are discussed

    Experience-driven formation of parts-based representations in a model of layered visual memory

    Get PDF
    Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.Comment: 34 pages, 12 Figures, 1 Table, published in Frontiers in Computational Neuroscience (Special Issue on Complex Systems Science and Brain Dynamics), http://www.frontiersin.org/neuroscience/computationalneuroscience/paper/10.3389/neuro.10/015.2009

    Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex

    Get PDF
    RF-LISSOM, a self-organizing model of laterally connected orientation maps in the primary visual cortex, was used to study the psychological phenomenon known as the tilt aftereffect. The same self-organizing processes that are responsible for the long-term development of the map are shown to result in tilt aftereffects over short time scales in the adult. The model permits simultaneous observation of large numbers of neurons and connections, making it possible to relate high-level phenomena to low-level events, which is difficult to do experimentally. The results give detailed computational support for the long-standing conjecture that the direct tilt aftereffect arises from adaptive lateral interactions between feature detectors. They also make a new prediction that the indirect effect results from the normalization of synaptic efficacies during this process. The model thus provides a unified computational explanation of self-organization and both the direct and indirect tilt aftereffect in the primary visual cortex

    Connectivity reflects coding: A model of voltage-based spike-timing-dependent-plasticity with homeostasis

    Get PDF
    Electrophysiological connectivity patterns in cortex often show a few strong connections in a sea of weak connections. In some brain areas a large fraction of strong connections are bidirectional, in others they are mainly unidirectional. In order to explain these connectivity patterns, we use a model of Spike-Timing-Dependent Plasticity where synaptic changes depend on presynaptic spike arrival and the postsynaptic membrane potential. The model describes several nonlinear effects in STDP experiments, as well as the voltage dependence of plasticity under voltage clamp and classical paradigms of LTP/LTD induction. We show that in a simulated recurrent network of spiking neurons our plasticity rule leads not only to receptive field development, but also to connectivity patterns that reflect the neural code: for temporal coding paradigms strong connections are predominantly unidirectional, whereas they are bidirectional under rate coding. Thus variable connectivity patterns in the brain could reflect different coding principles across brain areas

    Network-selectivity and stimulus-discrimination in the primary visual cortex : cell-assembly dynamics

    Get PDF
    Abstract : Visual neurons coordinate their responses in relation to the stimulus; however, the complex interplay between a stimulus and the functional dynamics of an assembly still eludes neuroscientists. To this aim, we recorded cell assemblies from multi-electrodes in the primary visual cortex of anaesthetized cats in response to randomly presented sine-wave drifting gratings whose orientation tilted in 22.5Ā° steps. Cross-correlograms divulged the functional connections at all the tested orientations. We show that a cell-assembly discriminates between orientations by recruiting a ā€˜salientā€™ functional network at every presented orientation, wherein, the connections and their strengths (peak-probabilities in the cross-correlogram) change from one orientation to another. Within these assemblies, closely tuned neurons exhibited increased connectivity and connection-strengths than differently tuned neurons. Minimal connectivity between untuned neurons suggests the significance of neuronal selectivity in assemblies. This study reflects upon the dynamics of functional connectivity, and brings to the fore the importance of a ā€˜signatureā€™ functional network in an assembly that is strictly related to a specific stimulus. Apparently, it points to the fact that an assembly is the major ā€˜functional unitā€™ of information processing in cortical circuits, rather than the individual neurons
    • ā€¦
    corecore