24,445 research outputs found

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF

    EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers

    Get PDF
    Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic setting

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Social Cohesion and Well-Being in the EU

    Get PDF
    At European level, social and economic policies are currently ordered and organised around achieving the goals of the Europe 2020 strategy - high levels of employment, productivity and social cohesion (1). It is widely recognised, however, that social cohesion is declining or at least under new pressures as a consequence of the economic and employment crisis, but also due to longer-term trends including growing inequality, immigration and increasing cultural diversity (2). A new report on \u27Social justice in the EU\u27 from the Bertelsmann Stiftung shows that social disparities in the EU are increasing in relation to poverty, labour market access, health, equitable education as well as intergenerational justice (3). A t the same time, social cohesion is generally valued in and of itself, as it reflects solidarity and social harmony, while also being regarded as an important resource for economic success and quality of life. In general terms, well-being has become established as a fundamental objective of EU policies; Article 3 of the Treaty on the Functioning of the European Union (TFEU) states that the Union\u27s aim is to promote \u27the well-being of its peoples\u27. Likewise the European Sustainable Development Strategy of 2006 cites the well-being of present and future generations as its central objective. Europe 2020 aims to put people first to create \u27more jobs and better lives\u27. It has adopted a number of targets that go beyond conventional measures of economic performance, with goals to reduce poverty and social exclusion, to promote education and employment. Over the past decade there have been growing demands from politicians, the media and public opinion to develop better approaches to measure economic and social progress and to monitor well-being in a more comprehensive way (4). In particular, the European Commission\u27s (2009) Communication on \u27GDP and beyond\u27 underlined the need for measurement of quality of life and well-being as outcome indicators, and highlighted the importance of more accurate reporting on the distributional aspects and corresponding inequalities. It concluded that ultimately, national and EU policies will be judged on whether they are successful in delivering (social, economic and environmental) goals and improving the well-being of Europeans. (5). This policy brief examines how significant social cohesion is for the well-being of people in Europe. It considers, in particular, how income inequalities are related to social cohesion and well-being. It is based upon existing reports (2,4) and specifically upon the analyses in a report prepared for the Bertelsmann Stiftung (6)

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    Systems approach to engineering education design

    Get PDF
    [Abstract]: The design and delivery of effective engineering education to diverse cohorts of adult learners is challenging. The sheer volume and diversity of published literature relating to the scholarship of teaching and learning presents a challenge to educational designers and teaching practitioners alike. A systems approach to design and development, incorporating key principles from the literature, can assist practitioners (particularly those new to teaching) in the effective design and delivery of technical courses. This paper presents a research-based educational lifecycle model to support the design of engineering education. The paper then describes a requirements-driven development methodology that has been applied successfully to the design and delivery of a number of technical courses involving different cohorts of adult learners. The application of the methodology to development of an introductory radar systems course is used as a case study throughout the paper

    Detect the unexpected: a science for surveillance

    Get PDF
    Purpose – The purpose of this paper is to outline a strategy for research development focused on addressing the neglected role of visual perception in real life tasks such as policing surveillance and command and control settings. Approach – The scale of surveillance task in modern control room is expanding as technology increases input capacity at an accelerating rate. The authors review recent literature highlighting the difficulties that apply to modern surveillance and give examples of how poor detection of the unexpected can be, and how surprising this deficit can be. Perceptual phenomena such as change blindness are linked to the perceptual processes undertaken by law-enforcement personnel. Findings – A scientific programme is outlined for how detection deficits can best be addressed in the context of a multidisciplinary collaborative agenda between researchers and practitioners. The development of a cognitive research field specifically examining the occurrence of perceptual “failures” provides an opportunity for policing agencies to relate laboratory findings in psychology to their own fields of day-to-day enquiry. Originality/value – The paper shows, with examples, where interdisciplinary research may best be focussed on evaluating practical solutions and on generating useable guidelines on procedure and practice. It also argues that these processes should be investigated in real and simulated context-specific studies to confirm the validity of the findings in these new applied scenarios

    Spatial ability, urban wayfinding and location-based services:a review and first results

    Get PDF
    Location-Based Services (LBS) are a new industry at the core of which are GISand spatial databases. With increasing mobility of individuals, the anticipatedavailability of broadband communications for mobile devices and growingvolumes of location specific information available in databases there willinevitably be an increase in demand for services providing location relatedinformation to people on the move. New Information and CommunicationTechnologies (NICTs) are providing enhanced possibilities for navigating ?smartcities?. Urban environments, meanwhile, have increasing spatial complexity.Navigating urban environments is becoming an important issue. The time is ripefor a re-appraisal of urban wayfinding. This paper critically reviews the currentLBS applications and raises a series of questions with regard to LBS for urbanwayfinding. Research is being carried out to measure individuals? spatialability/awareness and their degree of preference for using LBS in wayfinding. Themethodology includes both the use of questionnaires and a virtual reality CAVE.Presented here are the results of the questionnaire survey which indicate therelationships between individuals? spatial ability, use of NICTs and modepreference for receiving wayfinding cues. Also discussed are our future researchdirections on LBS, particular on issues of urban wayfinding using NICTs

    Shifting perspectives: holography and the emergence of technical communities

    Get PDF
    Holography, the technology of three-dimensional imaging, has repeatedly been reconceptualised by new communities. Conceived in 1947 as a means of improving electron microscopy, holography was revitalized in the early 1960s by engineer-scientists at classified laboratories. The invention promoted the transformation of a would-be discipline (optical engineering) and spawned limited artist-scientist collaborations. However, a separate artisanal community promoted a distinct countercultural form of holography via a revolutionary technology: the sandbox optical table. Their tools, sponsorship, products, literature and engagement with wider culture differentiated the communities, which instituted a limited ‘technological trade’. The subject strikingly illustrates the co-evolution of new technology along with highly dissimilar user groups, neither of which fostered the secure establishment of a profession or discipline. The case generalises the concept of 'research-technologists' and 'peripheral science', and extends the ideas of Langdon Winner by demonstrating how the political dimensions of a technology can be important but evanescent in the growth of technical communities

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
    • 

    corecore