151,055 research outputs found

    Real-time modelling and interpolation of spatio-temporal marine pollution

    Get PDF
    Due to the complexity of the interactions involved in various dynamic systems, known physical, biological or chemical laws cannot adequately describe the dynamics behind these processes. The study of these systems thus depends on measurements often taken at various discrete spatial locations through time by noisy sensors. For this reason, scientists often necessitate interpolative, visualisation and analytical tools to deal with the large volumes of data common to these systems. The starting point of this study is the seminal research by C. Shannon on sampling and reconstruction theory and its various extensions. Based on recent work on the reconstruction of stochastic processes, this paper develops a novel real-time estimation method for non- stationary stochastic spatio-temporal behaviour based on the Integro-Di erence Equation (IDE). This meth- odology is applied to collected marine pollution data from a Norwegian fjord. Comparison of the results obtained by the proposed method with interpolators from state-of-the-art Geographical Information System (GIS) packages will show, that signifi cantly superior results are obtained by including the temporal evolution in the spatial interpolations.peer-reviewe

    Active Semi-Supervised Learning Using Sampling Theory for Graph Signals

    Full text link
    We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.Comment: 10 pages, 6 figures, To appear in KDD'1

    On the metric character of the quantum Jensen-Shannon divergence

    Get PDF
    In a recent paper, the generalization of the Jensen Shannon divergence (JSD) in the context of quantum theory has been studied (Phys. Rev. A 72, 052310 (2005)). This distance between quantum states has shown to verify several of the properties required for a good distinguishability measure. Here we investigate the metric character of this distance. More precisely we show, formally for pure states and by means of simulations for mixed states, that its square root verifies the triangle inequality.Comment: 8 pages, 1 figures, numerical results substantially improved in Sec. III. To appear in Phys. Rev.
    • …
    corecore