64,598 research outputs found

    Spectra and eigenspaces from regular partitions of Cayley (di)graphs of permutation groups

    Get PDF
    In this paper, we present a method to obtain regular (or equitable) partitions of Cayley (di)graphs (that is, graphs, digraphs, or mixed graphs) of permutation groups on nn letters. We prove that every partition of the number nn gives rise to a regular partition of the Cayley graph. By using representation theory, we also obtain the complete spectra and the eigenspaces of the corresponding quotient (di)graphs. More precisely, we provide a method to find all the eigenvalues and eigenvectors of such (di)graphs, based on their irreducible representations. As examples, we apply this method to the pancake graphs P(n)P(n) and to a recent known family of mixed graphs Γ(d,n,r)\Gamma(d,n,r) (having edges with and without direction). As a byproduct, the existence of perfect codes in P(n)P(n) allows us to give a lower bound for the multiplicity of its eigenvalue −1-1

    Double-Edge Factor Graphs: Definition, Properties, and Examples

    Full text link
    Some of the most interesting quantities associated with a factor graph are its marginals and its partition sum. For factor graphs \emph{without cycles} and moderate message update complexities, the sum-product algorithm (SPA) can be used to efficiently compute these quantities exactly. Moreover, for various classes of factor graphs \emph{with cycles}, the SPA has been successfully applied to efficiently compute good approximations to these quantities. Note that in the case of factor graphs with cycles, the local functions are usually non-negative real-valued functions. In this paper we introduce a class of factor graphs, called double-edge factor graphs (DE-FGs), which allow local functions to be complex-valued and only require them, in some suitable sense, to be positive semi-definite. We discuss various properties of the SPA when running it on DE-FGs and we show promising numerical results for various example DE-FGs, some of which have connections to quantum information processing.Comment: Submitte

    Right-convergence of sparse random graphs

    Get PDF
    The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs \G_N, N\ge 1 to some target graph WW. The theory of dense graph convergence, including random dense graphs, is now well understood, but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the log-partition function limits, also known as free energy limits, appropriately normalized for the Gibbs distribution associated with WW. In this paper we prove that the sequence of sparse \ER graphs is right-converging when the tensor product associated with the target graph WW satisfies certain convexity property. We treat the case of discrete and continuous target graphs WW. The latter case allows us to prove a special case of Talagrand's recent conjecture (more accurately stated as level III Research Problem 6.7.2 in his recent book), concerning the existence of the limit of the measure of a set obtained from RN\R^N by intersecting it with linearly in NN many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli and developed further in a series of papers. Specifically, Bayati et al establish the right-convergence property for Erdos-Renyi graphs for some special cases of WW. In this paper most of the results in this paper follow as a special case of our main theorem.Comment: 22 page

    Conformal Field Theories, Graphs and Quantum Algebras

    Get PDF
    This article reviews some recent progress in our understanding of the structure of Rational Conformal Field Theories, based on ideas that originate for a large part in the work of A. Ocneanu. The consistency conditions that generalize modular invariance for a given RCFT in the presence of various types of boundary conditions --open, twisted-- are encoded in a system of integer multiplicities that form matrix representations of fusion-like algebras. These multiplicities are also the combinatorial data that enable one to construct an abstract ``quantum'' algebra, whose 6j6j- and 3j3j-symbols contain essential information on the Operator Product Algebra of the RCFT and are part of a cell system, subject to pentagonal identities. It looks quite plausible that the classification of a wide class of RCFT amounts to a classification of ``Weak C∗C^*- Hopf algebras''.Comment: 23 pages, 12 figures, LateX. To appear in MATHPHYS ODYSSEY 2001 --Integrable Models and Beyond, ed. M. Kashiwara and T. Miwa, Progress in Math., Birkhauser. References and comments adde
    • 

    corecore