11 research outputs found

    Dissemination of metaldehyde catabolic pathways is driven by mobile genetic elements in Proteobacteria

    Get PDF
    Bioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders Acinetobacter calcoaceticus E1 and Sphingobium CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In A. calcoaceticus E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading ?-and ?-Proteobacteria, indicating horizontal gene transfer (HGT). For Sphingobium CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in Escherichia coli alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in ?, ? and ?-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an ?-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided.Funding information: VCG was supported by the University of Costa Rica with a Scholarship for Doctoral Studies Abroad and the University of York with a Scholarship for Overseas Students. MPG-B is supported by grant PID2020-117923GB-I00 from the Spanish Ministry of Science and Innovation. JM is grateful for NERC award (NE/N009061/1) and Thames Water for supporting a scholarship for EF

    First Complete Genome of the Thermophilic Polyhydroxyalkanoates Producing Bacterium Schlegelella thermodepolymerans DSM 15344

    Get PDF
    Schlegelella thermodepolymerans is a moderately thermophilic bacterium capable of producing polyhydroxyalkanoates (PHA) – biodegradable polymers representing an alternative to conventional plastics. Here, we present the first complete genome of the type strain S. thermodepolymerans DSM 15344 that was assembled by hybrid approach using both, long (Oxford Nanopore) and short (Illumina) reads. The genome consists of a single 3,858,501bp long circular chromosome with GC content of 70.3%. Genome annotation identified 3,650 genes in total while 3,598 open reading frames belonged to protein coding genes. Functional annotation of the genome and division of genes into clusters of orthologous groups (COG) revealed a relatively high number of 1,013 genes with unknown function or unknown COG, which reflects the fact that only a little is known about thermophilic PHA producing bacteria on a genome level. On the other hand, 270 genes involved in energy conversion and production were detected. This group covers genes involved in catabolic processes which suggests capability of S. thermodepolymerans DSM 15344 to utilize and biotechnologically convert various substrates such as lignocellulose-based saccharides, glycerol, or lipids. Based on the knowledge of its genome, it can be stated that S. thermodepolymerans DSM 15344 is a very interesting, metabolically versatile bacterium with great biotechnological potential

    Whole genome sequencing of \u3ci\u3eMoraxella bovis\u3c/i\u3e strains from North America reveals two genotypes with different genetic determinants

    Get PDF
    Background: Moraxella bovis and Moraxella bovoculi both associate with infectious bovine keratoconjunctivitis (IBK), an economically significant and painful ocular disease that affects cattle worldwide. There are two genotypes of M. bovoculi (genotypes 1 and 2) that differ in their gene content and potential virulence factors, although neither have been experimentally shown to cause IBK. M. bovis is a causative IBK agent, however, not all strains carry a complete assortment of known virulence factors. The goals of this study were to determine the population structure and depth of M. bovis genomic diversity, and to compare core and accessory genes and predicted outer membrane protein profiles both within and between M. bovis and M. bovoculi. Results: Phylogenetic trees and bioinformatic analyses of 36 M. bovis chromosomes sequenced in this study and additional available chromosomes of M. bovis and both genotype 1 and 2 M. bovoculi, showed there are two genotypes (1 and 2) of M. bovis. The two M. bovis genotypes share a core of 2015 genes, with 121 and 186 genes specific to genotype 1 and 2, respectively. The two genotypes differ by their chromosome size and prophage content, encoded protein variants of the virulence factor hemolysin, and by their affiliation with different plasmids. Eight plasmid types were identified in this study, with types 1 and 6 observed in 88 and 56% of genotype 2 strains, respectively, and absent from genotype 1 strains. Only type 1 plasmids contained one or two gene copies encoding filamentous haemagglutinin- like proteins potentially involved with adhesion. A core of 1403 genes was shared between the genotype 1 and 2 strains of both M. bovis and M. bovoculi, which encoded a total of nine predicted outer membrane proteins. Conclusions: There are two genotypes of M. bovis that differ in both chromosome content and plasmid profiles and thus may not equally associate with IBK. Immunological reagents specifically targeting select genotypes of M. bovis, or all genotypes of M. bovis and M. bovoculi together could be designed from the outer membrane proteins identified in this study

    Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products

    Get PDF
    Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonasmendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today

    Dissemination of metaldehyde catabolic pathways is driven by mobile genetic elements in Proteobacteria

    Get PDF
    Bioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders Acinetobacter calcoaceticus E1 and Sphingobium CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In A. calcoaceticus E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading ÎČ- and Îł-Proteobacteria, indicating horizontal gene transfer (HGT). For Sphingobium CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in Escherichia coli alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in α, ÎČ and Îł-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an α-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided

    The rate, spectrum and effects of spontaneous mutation in bacteria with multiple chromosomes

    Get PDF
    Despite their essentiality for evolutionary change and role in many diseases, spontaneous mutations remain understudied because of both biological and technical barriers. Prokaryotic mutation biases are especially understudied and no studies have been conducted on bacteria with multiple chromosomes, leaving major gaps in our understanding of the role of genome content and structure on mutation. The application of mutation accumulation lines to whole-genome sequencing offers the opportunity to study spontaneous mutations in a wide range of prokaryotic organisms. Here, we present a genome-wide view of molecular mutation rates and spectra in Burkholderia cenocepacia, Vibrio fischeri, and Vibrio cholerae, three bacterial species that harbor multiple chromosomes but differ dramatically in %GC-content. We demonstrate both general and species specific biases in spontaneous mutation rates and spectra, while also highlighting how some mutational biases vary within within genomes. We then study the distribution of effects of spontaneous mutations in B. cenocepacia, illustrating that most mutations have little or no effect on fitness and those that do are mostly deleterious across multiple environments. Overall, this body of work offers unprecedented insight into the rate, spectrum, and fitness effects of spontaneous mutations in three prokaryotic organisms whose genomes harbor multiple circular chromosomes, a common but underappreciated bacterial genome architecture

    Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches.</p> <p>Results</p> <p><it>L. hongkongensis </it>possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two <it>arc </it>gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na<sup>+</sup>:H<sup>+ </sup>antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.</p

    Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches.</p> <p>Results</p> <p><it>L. hongkongensis </it>possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two <it>arc </it>gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na<sup>+</sup>:H<sup>+ </sup>antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.</p
    corecore