82,731 research outputs found

    A Hot Downflowing Model Atmosphere For Umbral Flashes And The Physical Properties Of Their Dark Fibrils

    Get PDF
    We perform NLTE inversions in a large set of umbral flashes, including the dark fibrils visible within them, and in the quiescent umbra by using the inversion code NICOLE on a set of full Stokes high-resolution Ca II 8542 A observations of a sunspot at disk center. We find that the dark structures have Stokes profiles that are distinct from those of the quiescent and flashed regions. They are best reproduced by atmospheres that are more similar to the flashed atmosphere in terms of velocities, even if with reduced amplitudes. We also find two sets of solutions that finely fit the flashed profiles: a set that is upflowing, featuring a transition region that is deeper than in the quiescent case and preceded by a slight dip in temperature, and a second solution with a hotter atmosphere in the chromosphere but featuring downflows close to the speed of sound at such heights. Such downflows may be related, or even dependent, on the presence of coronal loops, rooted in the umbra of sunspots, as is the case in the region analyzed. Similar loops have been recently observed to have supersonic downflows in the transition region and are consistent with the earlier "sunspot plumes" which were invariably found to display strong downflows in sunspots. Finally we find, on average, a magnetic field reduction in the flashed areas, suggesting that the shock pressure is moving field lines in the upper layers.Comment: Accepted in June for publication at ApJ. Comments to [email protected] or [email protected]

    Software implementation of a secure firmware update solution in an IoT context

    Get PDF
    The present paper is concerned with the secure delivery of firmware updates to Internet of Things (IoT) devices. Additionally, it deals with the design of a safe and secure bootloader for a UHF RFID reader. A software implementation of a secure firmware update solution is performed. The results show there is space to integrate even more security features into existing devices

    The Aha! Moment: The Science Behind Creative Insights

    Get PDF
    Insight, often referred to as an “aha moment,” has been defined as a sudden, conscious change in a person’s representation of a stimulus, situation, event, or problem. Recent advances in neuroimaging technology and neurophysiological techniques have allowed researchers an opportunity to hone in on the neural circuitry that governs insight, a phenomenon that has been theorized about by cognitive psychologists for over a century. Studies show that insight is not a sudden flash that comes from nowhere, but in fact is the result of the unconscious mind piecing together loosely connected bits of information stemming from prior knowledge and experiences and forming novel associations among them. This conceptualization of insight naturally gives rise to comparisons between insight and creativity. Creativity, however, involves many cognitive processes, occurring in many regions of the brain and thus cannot be laterally localized as insight can. Thus, creativity is not considered synonymous with insight; however, insight can certainly result in creative solutions during creative problem solving

    Flash floods simulation using Saint Venant equations

    Get PDF
    Flash floods prediction is considered one of the important environmental issues worldwide. In order to predict when and where the flood wave will invade and attack our lives, and provide solutions to deal with this problem it is essential to develop a reliable model that simulates accurately this physical phenomena. The research project reported in this paper is concerned with a study of unsteady free surface water flow, a hydrograph, resulting from a watershed just after the outlet station. To achieve this aim a numerical hydraulic model has been constructed to simulate the flow of water in the main stream based on the Saint Venant equations (SVES) using a staggered finite difference scheme to evaluate the discharge, the water stage, and the cross section area within the domain. While the Method Of Characteristics (MOC) is applied to achieve open boundary downstream and overcome the problem of reflections there. The developed model had passed a series of tests which indicated that this model is capable of simulating different cases of water flow that contain both steady and unsteady flow. Once the flood had been predicted it could be used as a stepping stone for different purposes including parameter identification (Ding et al. 2004), evaluating the sensitivity of the flood to some control variables (Copeland and Elhanafy 2006), Flood risk assessment (Elhanafy and Copeland 2007) ,uncertainty in the predicted flood (Elhanafy and Copeland 2007) and (Elhanafy et al. 2007)

    Asteroseismology and evolution of EHB stars

    Full text link
    The properties of the Extreme Horizontal Branch stars are quite well understood, but much uncertainty surrounds the many paths that bring a star to this peculiar configuration. Asteroseismology of pulsating EHB stars has been performed on a number of objects, bringing us to the stage where comparisons of the inferred properties with evolutionary models becomes feasible. In this review I outline our current understanding of the formation and evolution of these stars, with emphasis on recent progress. The aim is to show how the physical parameters derived by asteroseismology can enable the discrimination between different evolutionary models.Comment: 13 pages, 6 figures, invited review to appear in Communications in Asteroseismology vol.159, "Proceedings of the JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution
    • 

    corecore