50,130 research outputs found

    ON CERTAIN TOPOLOGICAL INDICES OF BENZENOID COMPOUNDS

    Get PDF
    Drug discovery is mainly the result of chance discovery and massive screening of large corporate libraries of synthesized or naturally-occurring compounds. Computer aided drug design is an approach to rational drug design made possible by the recent advances in computational chemistry in various fields of chemistry, such as molecular graphics, molecular mechanics, quantum chemistry, molecular dynamics, library searching, prediction of physical, chemical, and biological properties.  The structure of a chemical compound can be represented by a graph whose vertex and edge specify the atom and bonds respectively. Topological indices are designed basically by transforming a molecular graph into a number. A topological index is a numeric quantity of a molecule that is mathematically derived from the structural graph of a molecule. In this paper we compute certain topological indices of pyrene molecular graph. The topological indices are used in quantitative structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR) studies.Γ‚

    The role of Computer Aided Process Engineering in physiology and clinical medicine

    Get PDF
    This paper discusses the potential role for Computer Aided Process Engineering (CAPE) in developing engineering analysis and design approaches to biological systems across multiple levelsβ€”cell signalling networks, gene, protein and metabolic networks, cellular systems, through to physiological systems. The 21st Century challenge in the Life Sciences is to bring together widely dispersed models and knowledge in order to enable a system-wide understanding of these complex systems. This systems level understanding should have broad clinical benefits. Computer Aided Process Engineering can bring systems approaches to (i) improving understanding of these complex chemical and physical (particularly molecular transport in complex flow regimes) interactions at multiple scales in living systems, (ii) analysis of these models to help to identify critical missing information and to explore the consequences on major output variables resulting from disturbances to the system, and (iii) β€˜design’ potential interventions in in vivo systems which can have significant beneficial, or potentially harmful, effects which need to be understood. This paper develops these three themes drawing on recent projects at UCL. The first project has modeled the effects of blood flow on endothelial cells lining arteries, taking into account cell shape change resulting in changes in the cell skeleton which cause consequent chemical changes. A second is a project which is building an in silico model of the human liver, tieing together models from the molecular level to the liver. The composite model models glucose regulation in the liver and associated organs. Both projects involve molecular transport, chemical reactions, and complex multiscale systems, tackled by approaches from CAPE. Chemical Engineers solve multiple scale problems in manufacturing processes – from molecular scale through unit operations scale to plant-wide and enterprise wide systems – so have an appropriate skill set for tackling problems in physiology and clinical medicine, in collaboration with life and clinical scientists

    Carbons Into Bytes: Patented Chemical Compound Protection in the Virtual World

    Get PDF
    β€œVirtual” molecular compounds, created in molecular modeling software, are increasingly useful in the process of rational drug design. When a physical compound is patented, however, virtual use of the compound allows researchers to circumvent the protection granted to the patentee. To acquire protection from unauthorized use of compounds in their virtual form, patentees must directly claim the virtual compound. But Supreme Court decisions such as Bilski v. Kappos and Mayo Collaborative Services v. Prometheus Laboratories, Inc. call into question whether virtual compound claims are patentable subject matter under Β§ 101. Using the guidance offered by the Supreme Court and Federal Circuit, this Issue Brief argues that virtual compound claims are not abstract ideas and therefore, consistent with patent policy, qualify as patentable subject matter

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Novel cruzain inhibitors for the treatment of Chagas' disease.

    Get PDF
    The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, affects millions of individuals and continues to be an important global health concern. The poor efficacy and unfavorable side effects of current treatments necessitate novel therapeutics. Cruzain, the major cysteine protease of T. cruzi, is one potential novel target. Recent advances in a class of vinyl sulfone inhibitors are encouraging; however, as most potential therapeutics fail in clinical trials and both disease progression and resistance call for combination therapy with several drugs, the identification of additional classes of inhibitory molecules is essential. Using an exhaustive virtual-screening and experimental validation approach, we identify several additional small-molecule cruzain inhibitors. Further optimization of these chemical scaffolds could lead to the development of novel drugs useful in the treatment of Chagas' disease

    Chemoinformatics Research at the University of Sheffield: A History and Citation Analysis

    Get PDF
    This paper reviews the work of the Chemoinformatics Research Group in the Department of Information Studies at the University of Sheffield, focusing particularly on the work carried out in the period 1985-2002. Four major research areas are discussed, these involving the development of methods for: substructure searching in databases of three-dimensional structures, including both rigid and flexible molecules; the representation and searching of the Markush structures that occur in chemical patents; similarity searching in databases of both two-dimensional and three-dimensional structures; and compound selection and the design of combinatorial libraries. An analysis of citations to 321 publications from the Group shows that it attracted a total of 3725 residual citations during the period 1980-2002. These citations appeared in 411 different journals, and involved 910 different citing organizations from 54 different countries, thus demonstrating the widespread impact of the Group's work

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe
    • …
    corecore