1,752 research outputs found

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applications¿ and `generic issues¿ as the main characteristics

    Modeling and Simulation of MEMS Components: Challenges and Possible Solutions

    Get PDF

    Development of a light-powered microstructure : enhancing thermal actuation with near-infrared absorbent gold nanoparticles.

    Get PDF
    Development of microscale actuating technologies has considerably added to the toolset for interacting with natural components at the cellular level. Small-scale actuators and switches have potential in areas such as microscale pumping and particle manipulation. Thermal actuation has been used with asymmetric geometry to create large deflections with high force relative to electrostatically driven systems. However, many thermally based techniques require a physical connection for power and operate outside the temperature range conducive for biological studies and medical applications. The work presented here describes the design of an out-of-plane bistable switch that responds to near-infrared light with wavelength-specific response. In contrast to thermal actuating principles that require wired conductive components for Joule heating, the devices shown here are wirelessly powered by near -infrared (IR) light by patterning a wavelength-specific absorbent gold nanoparticle (GNP) film onto the microstructure. An optical window exists which allows near-IR wavelength light to permeate living tissue, and high stress mismatch in the bilayer geometry allows for large actuation at biologically acceptable limits. Patterning the GNP film will allow thermal gradients to be created from a single laser source, and integration of various target wavelengths will allow for microelectromechanical (MEMS) devices with multiple operating modes. An optically induced temperature gradient using wavelength-selective printable or spinnable coatings would provide a versatile method of wireless and non-invasive thermal actuation. This project aims to provide a fundamental understanding of the particle and surface interaction for bioengineering applications based on a “hybrid” of infrared resonant gold nanoparticles and MEMS structures. This hybrid technology has potential applications in light-actuated switches and other mechanical structures. Deposition methods and surface chemistry are integrated with three-dimensional MEMS structures in this work. The long-term goal of this project is a system of light-powered microactuators for exploring cells\u27 response to mechanical stimuli, adding to the fundamental understanding of tissue response to everyday mechanical stresses at the molecular level

    Development of novel micropneumatic grippers for biomanipulation

    Get PDF
    Microbjects with dimensions from 1 μm to 1 mm have been developed recently for different aspects and purposes. Consequently, the development of handling and manipulation tools to fulfil this need is urgently required. Micromanipulation techniques could be generally categorized according to their actuation method such as electrostatic, thermal, shape memory alloy, piezoelectric, magnetic, and fluidic actuation. Each of which has its advantage and disadvantage. The fluidic actuation has been overlooked in MEMS despite its satisfactory output in the micro-scale. This thesis presents different families of pneumatically driven, low cost, compatible with biological environment, scalable, and controllable microgrippers. The first family demonstrated a polymeric microgripper that was laser cut and actuated pneumatically. It was tested to manipulate microparticles down to 200 microns. To overcome the assembly challenges that arise in this family, the second family was proposed. The second family was a micro-cantilever based microgripper, where the device was assembled layer by layer to form a 3D structure. The microcantilevers were fabricated using photo-etching technique, and demonstrated the applicability to manipulate micro-particles down to 200 microns using automated pick-and-place procedure. In addition, this family was used as a tactile-detector as well. Due to the angular gripping scheme followed by the above mentioned families, gripping smaller objects becomes a challenging task. A third family following a parallel gripping scheme was proposed allowing the gripping of smaller objects to be visible. It comprises a compliant structure microgripper actuated pneumatically and fabricated using picosecond laser technology, and demonstrated the capability of gripping microobject as small as 100 μm microbeads. An FEA modelling was employed to validate the experimental and analytical results, and excellent matching was achieved

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome
    corecore