210,433 research outputs found

    Volumetric velocimetry for fluid flows

    Get PDF
    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.SD was partially supported under Grant No. DPI2016-79401-R funded by the Spanish State Research Agency (SRA) and the European Regional Development Fund (ERDF). FC was partially supported by the U.S. National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems, Grant No. 1453538)

    Analytical evaluation of the X-ray scattering contribution to imaging degradation in grazing-incidence X-ray telescopes

    Full text link
    The focusing performance of X-ray optics (conveniently expressed in terms of HEW, Half Energy Width) strongly depend on both mirrors deformations and photon scattering caused by the microroughness of reflecting surfaces. In particular, the contribution of X-ray Scattering (XRS) to the HEW of the optic is usually an increasing function H(E) of the photon energy E. Therefore, in future hard X-ray imaging telescopes of the future (SIMBOL-X, NeXT, Constellation-X, XEUS), the X-ray scattering could be the dominant problem since they will operate also in the hard X-ray band (i.e. beyond 10 keV). [...] Several methods were proposed in the past years to estimate the scattering contribution to the HEW, dealing with the surface microroughness expressed in terms of its Power Spectral Density (PSD), on the basis of the well-established theory of X-ray scattering from rough surfaces. We faced that problem on the basis on the same theory, but we tried a new approach: the direct, analytical translation of a given surface roughness PSD into a H(E) trend, and - vice versa - the direct translation of a H(E) requirement into a surface PSD. This PSD represents the maximum tolerable microroughness level in order to meet the H(E) requirement in the energy band of a given X-ray telescope. We have thereby found a new, analytical and widely applicable formalism to compute the XRS contribution to the HEW from the surface PSD, provided that the PSD had been measured in a wide range of spatial frequencies. The inverse problem was also solved, allowing the immediate evaluation of the mirror surface PSD from a measured function H(E). The same formalism allows establishing the maximum allowed PSD of the mirror in order to fulfill a given H(E) requirement. [...]Comment: 10 pages, 6 figures, published in Astronomy & Astrophysics, sect. "Astronomical Instrumentation". In this version, a typo in two equations has been corrected. After the correction, the other results, formulae and conclusions in the paper remain unchange

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    Spectral imaging of thermal damage induced during microwave ablation in the liver

    Get PDF
    Induction of thermal damage to tissue through delivery of microwave energy is frequently applied in surgery to destroy diseased tissue such as cancer cells. Minimization of unwanted harm to healthy tissue is still achieved subjectively, and the surgeon has few tools at their disposal to monitor the spread of the induced damage. This work describes the use of optical methods to monitor the time course of changes to the tissue during delivery of microwave energy in the porcine liver. Multispectral imaging and diffuse reflectance spectroscopy are used to monitor temporal changes in optical properties in parallel with thermal imaging. The results demonstrate the ability to monitor the spatial extent of thermal damage on a whole organ, including possible secondary effects due to vascular damage. Future applications of this type of imaging may see the multispectral data used as a feedback mechanism to avoid collateral damage to critical healthy structures and to potentially verify sufficient application of energy to the diseased tissue.Comment: 4pg,6fig. Copyright 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    High performances monolithic CMOS detectors for space applications

    Get PDF
    During the last 10 years, research about CMOS image sensors (also called APS -Active Pixel Sensors) has been intensively carried out, in order to offer an alternative to CCDs as image sensors. This is particularly the case for space applications as CMOS image sensors feature characteristics which are obviously of interest for flight hardware: parallel or semi-parallel architecture, on chip control and processing electronics, low power dissipation, high level ofradiation tolerance... Many image sensor companies, institutes and laboratories have demonstrated the compatibility of CMOS image sensors with consumer applications: micro-cameras, video-conferencing, digital-still cameras. And recent designs have shown that APS is getting closer to the CCD in terms ofperformance level. However, the large majority ofthe existing products do not offer the specific features which are required for many space applications. ASTRI1JM and SUPAERO/CIMI have decided to work together in view of developing CMOS image sensors dedicated to space business. After a brief presentation of the team organisation for space image sensor design and production, the latest results of a high performances 512x512 pixels CMOS device characterisation are presented with emphasis on the achieved electro-optical performance. Finally, the on going and short-term coming activities of the team are discussed
    corecore