38,884 research outputs found

    Inexpensive fusion methods for enhancing feature detection

    Get PDF
    Recent successful approaches to high-level feature detection in image and video data have treated the problem as a pattern classification task. These typically leverage the techniques learned from statistical machine learning, coupled with ensemble architectures that create multiple feature detection models. Once created, co-occurrence between learned features can be captured to further boost performance. At multiple stages throughout these frameworks, various pieces of evidence can be fused together in order to boost performance. These approaches whilst very successful are computationally expensive, and depending on the task, require the use of significant computational resources. In this paper we propose two fusion methods that aim to combine the output of an initial basic statistical machine learning approach with a lower-quality information source, in order to gain diversity in the classified results whilst requiring only modest computing resources. Our approaches, validated experimentally on TRECVid data, are designed to be complementary to existing frameworks and can be regarded as possible replacements for the more computationally expensive combination strategies used elsewhere

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University

    Visual Information Retrieval in Endoscopic Video Archives

    Get PDF
    In endoscopic procedures, surgeons work with live video streams from the inside of their subjects. A main source for documentation of procedures are still frames from the video, identified and taken during the surgery. However, with growing demands and technical means, the streams are saved to storage servers and the surgeons need to retrieve parts of the videos on demand. In this submission we present a demo application allowing for video retrieval based on visual features and late fusion, which allows surgeons to re-find shots taken during the procedure.Comment: Paper accepted at the IEEE/ACM 13th International Workshop on Content-Based Multimedia Indexing (CBMI) in Prague (Czech Republic) between 10 and 12 June 201

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    Unsupervised Graph-based Rank Aggregation for Improved Retrieval

    Full text link
    This paper presents a robust and comprehensive graph-based rank aggregation approach, used to combine results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to combine arbitrary models, defined in terms of different ranking criteria, such as those based on textual, image or hybrid content representations. We reformulate the ad-hoc retrieval problem as a document retrieval based on fusion graphs, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we claim that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Another contribution is that our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking, without further computations and post-processing steps over the graphs. Based on the graphs, a novel similarity retrieval score is formulated using an efficient computation of minimum common subgraphs. Finally, another benefit over existing approaches is the absence of hyperparameters. A comprehensive experimental evaluation was conducted considering diverse well-known public datasets, composed of textual, image, and multimodal documents. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused, thus demonstrating the successful capability of the proposal in representing queries based on a unified graph-based model of rank fusions

    Unsupervised Visual and Textual Information Fusion in Multimedia Retrieval - A Graph-based Point of View

    Full text link
    Multimedia collections are more than ever growing in size and diversity. Effective multimedia retrieval systems are thus critical to access these datasets from the end-user perspective and in a scalable way. We are interested in repositories of image/text multimedia objects and we study multimodal information fusion techniques in the context of content based multimedia information retrieval. We focus on graph based methods which have proven to provide state-of-the-art performances. We particularly examine two of such methods : cross-media similarities and random walk based scores. From a theoretical viewpoint, we propose a unifying graph based framework which encompasses the two aforementioned approaches. Our proposal allows us to highlight the core features one should consider when using a graph based technique for the combination of visual and textual information. We compare cross-media and random walk based results using three different real-world datasets. From a practical standpoint, our extended empirical analysis allow us to provide insights and guidelines about the use of graph based methods for multimodal information fusion in content based multimedia information retrieval.Comment: An extended version of the paper: Visual and Textual Information Fusion in Multimedia Retrieval using Semantic Filtering and Graph based Methods, by J. Ah-Pine, G. Csurka and S. Clinchant, submitted to ACM Transactions on Information System
    corecore