6,426 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A Technology Aware Magnetic QCA NCL-HDL Architecture

    Get PDF
    Magnetic Quantum Dot Cellular Automata (MQCA) have been recently proposed as an attractive implementation of QCA as a possible CMOS technology substitute. Marking a difference with respect to previous contributions, in this work we show that it is possible to develop and describe complex MQCA computational blocks strongly linking technology and having in mind a feasible realization. Thus, we propose a practicable clock structure for MQCA baptised "snake-clock", we stick to this while developing a system level Hardware Description Language (HDL) based description of an architectural block, and we suggest a delay insensitive Null Convention Logic (NCL) implementation for the magnetic case so that the "layout=timing" problem can be solved. Furthermore we include in our model aspects critically related to technology and real production, that is timing, power and layout, and we present the preliminary steps of our experiments, the results of which will be included in the architecture descriptio

    Towards a single-photon energy-sensitive pixel readout chip: pixel level ADCs and digital readout circuitry

    Get PDF
    Unlike conventional CMOS imaging, a single\ud photon imager detects each individual photon impinging on\ud a detector, accumulating the number of photons during a\ud certain time window and not the charge generated by the all\ud the photons hitting the detector during said time window.\ud The latest developments in the semiconductor industry\ud are allowing faster and more complex chips to be designed\ud and manufactured. With these developments in mind we are\ud working towards the next step in single photon X-ray imaging:\ud energy sensitive pixel readout chips. The goal is not only\ud to detect and count individual photons, but also to measure\ud the charge deposited in the detector by each photon, and\ud consequently determine its energy. Basically, we are aiming\ud at a spectrometer-in-a-pixel, or a “color X-ray camera”.\ud The approach we have followed towards this goal is the\ud design of small analog-to-digital-converters at the pixel level,\ud together with a very fast digital readout from the pixels to\ud the periphery of the chip, where the data will be transmitted\ud off-chip.\ud We will present here the design and measurement on prototype\ud chips of two different 4-bit pixel level ADCs. The\ud ADCs are optimized for very small area and low power, with\ud a resolution of 4-bits and a sample rate of 1 Msample/s. The\ud readout architecture is based around current-mode sense\ud amplifiers and asynchronous token-passing between the pixels.\ud This is done in order to achieve event-by-event readout\ud and, consequently, on-line imaging. We need to read eventby-\ud event (photon-by-photon), because we cannot have memory\ud on the pixels due to obvious size constraints. We use\ud current-mode sense amplifiers because they perform very\ud well in similar applications as very fast static-RAM readout
    • 

    corecore