2,011 research outputs found

    Three-dimensional scanning as a means of archiving sculptures

    Get PDF
    Thesis (M. Tech. Design technology) -- Central University of Technology, Free State, 2011This dissertation outlines a procedural scanning process using the portable ZCorporation ZScanner® 700 and provides an overview of the developments surrounding 3D scanning technologies; specifically their application for archiving Cultural Heritage sites and projects. The procedural scanning process is structured around the identification of 3D data recording variables applicable to the digital archiving of an art museum’s collection of sculptures. The outlining of a procedural 3D scanning environment supports the developing technology of 3D digital archiving in view of artefact preservation and interactive digital accessibility. Presented in this paper are several case studies that record 3D scanning variables such as texture, scale, surface detail, light and data conversion applicable to varied sculptural surfaces and form. Emphasis is placed on the procedural documentation and the anomalies associated with the physical object, equipment used, and the scanning environment. In support of the above, the Cultural Heritage projects that are analyzed prove that 3D portable scanning could provide digital longevity and access to previously inaccessible arenas for a diverse range of digital data archiving infrastructures. The development of 3D data acquisition via scanning, CAD modelling and 2D to 3D data file conversion technologies as well as the aesthetic effect and standards of digital archiving in terms of the artwork – viewer relationship and international practices or criterions of 3D digitizing are analysed. These projects indicate the significant use of optical 3D scanning techniques and their employ on renowned historical artefacts thus emphasizing their importance, safety and effectiveness. The aim with this research is to establish that the innovation and future implications of 3D scanning could be instrumental to future technological advancement in an interdisciplinary capacity to further data capture and processing in various Cultural Heritage diagnostic applications

    Fuentes de color mejoradas para el modelado tridimensional de artefactos arqueológicos de tamaño medio localizados in situ.

    Get PDF
    [EN] The paper describes a color enhanced processing system - applied as case study on an artifact of the Pompeii archaeological area - developed in order to enhance different techniques for reality-based 3D models construction and visualization of archaeological artifacts. This processing allows rendering reflectance properties with perceptual fidelity on a consumer display and presents two main improvements over existing techniques: a. the color definition of the archaeological artifacts; b. the comparison between the range-based and photogrammetry-based pipelines to understand the limits of use and suitability to specific objects.[ES] El documento describe un sistema mejorado de procesamiento de color, aplicado como caso de estudio sobre un artefacto de la zona arqueológica de Pompeya. Este sistema se ha desarrollado con la finalidad de mejorar las diferentes técnicas para la construcción de modelos 3D basados sobre datos de la realidad y para la visualización de artefactos arqueológicos. Este proceso permite visualizar las propiedades de reflectancia con fidelidad perceptible en una pantalla de usuario y presenta dos mejoras principales respecto a las técnicas existentes:a. la definición del color de los artefactos arqueológicos;b. la comparación entre los flujos de trabajo basados en range-based-modeling y en fotogrametría, para entender los límites de uso y la adecuación a los objetos específicos.Apollonio, FI.; Ballabeni, M.; Gaiani, M. (2014). Color enhanced pipelines for reality-based 3D modeling of on site medium sized archeological artifacts. Virtual Archaeology Review. 5(10):59-76. https://doi.org/10.4995/var.2014.4218OJS5976510AGISOFT PHOTOSCAN (2014), http://www.agisoft.ru.ALLEN P., FEINER S., et al. (2004): "Seeing into the past: Creating a 3D modeling pipeline for archaeological visualization", in Proceedings of 3DPVT '04, 2004, pp. 751-758.BERALDIN J.-A., PICARD M., et al. (2002): "Virtualizing a byzantine crypt by combining high-resolution textures with laser scanner 3D data", in Proceedings of VSMM 2002, pp. 3-14.BERNARDINI F., RUSHMEIER H. (2000): "The 3D model acquisition pipeline", in Eurographics 2000 State of the Art Reports.BLAIS F. (2004): "A review of 20 years of Range Sensors Development", in Journal of Electronic Imaging, Vol. 13, N. 1, pp. 231-40. http://dx.doi.org/10.1117/1.1631921BLAIS F., BERALDIN J.A. (2006): "Recent Developments in 3D Multi-modal Laser Imaging Applied to Cultural Heritage, in Machine Vision and Applications, Vol. 17, N. 6, pp. 395-409. http://dx.doi.org/10.1007/s00138-006-0025-3BOEHLER W. (2005): "Comparison of 3D scanning and other 3D measurement techniques", in Baltsavias E., Gruen, A., et al. (eds), Recording, Modeling and Visualization of Cultural Heritage, Taylor & Francis.BOOCHS F., BENTKOWSKA-KAFEL A., et al. (2013): "Towards optimal spectral and spatial documentation of Cultural Heritage. COSCH - an interdisciplinary action in the COST framework", in ISPRS Arch., Vol. XL-5/W2, 2013, pp. 109-113.CALLIERI M., CIGNONI P., et al. (2008): "Masked photo blending: mapping dense photographic dataset on high-resolution 3D models", in Computer & Graphics, Vol. 32, N. 4, 2008, pp. 464 - 473.CALLIERI M., DELLEPIANE M., et al. (2011): "Processing Sampled 3D Data: Reconstruction and Visualization Technologies", in F. Stanco, S. Battiato, G. Gallo (eds.), Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration and Reconstruction of Ancient Artworks, Taylor and Francis, pp. 105-136.CORSINI M., DELLEPIANE M., et al. (2009):"Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties", in Computer Graphics Forum, Vol. 28, N. 7, 2009, pp. 1755-1764. http://dx.doi.org/10.1111/j.1467-8659.2009.01552.xDANA K.J., VAN GINNEKEN B., et al.. (1999): "Reflectance and texture of real-world surfaces", in ACM Transaction on Graphics, Vol. 18, N. 1, 1999, pp. 1-34. http://dx.doi.org/10.1145/300776.300778DE LUCA L., VERON P., FLORENZANO M. (2006): "Reverse engineering of architectural buildings based on a hybrid modeling approach", Computer & Graphics, Vol. 30, N. 2, pp. 160-76. http://dx.doi.org/10.1016/j.cag.2006.01.020DEBEVEC P. et al. (2004): "Estimating surface reflectance properties of a complex scene under captured natural illumination", in USC ICT Technical Report ICT-TR, 06/2004.DELLEPIANE M., MARROQUIM R., et al. (2012): "Flow-Based Local Optimization for Image-to-Geometry Projection", in IEEE Transactions on Visualization and Computer Graphics, Vol. 18, N. 3, 2012, pp. 463-474. http://dx.doi.org/10.1109/TVCG.2011.75DELLEPIANE M., DELL'UNTO N., et al. (2013a): "Archeological excavation monitoring using dense stereo matching techniques", in Journal of Cultural Heritage, Vol. 14, N. 3, 2013, pp. 201-210. http://dx.doi.org/10.1016/j.culher.2012.01.011DELLEPIANE M., SCOPIGNO R. (2013b): "Global refinement of image-to-geometry registration for color projection", in DigitalHeritage 2013 Proceedings, 2013, Vol. 1, pp. 39-46.DXO (2014), http://www.dxo.com/intl/photography/dxo-optics-pro/EL-HAKIM S.F., BRENNER C., ROTH G. (1998): "A multi-sensor approach to creating accurate virtual environments", in ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 53, N. 6, pp. 379-391. http://dx.doi.org/10.1016/S0924-2716(98)00021-5EL-HAKIM S.F., BERALDIN J.-A., et al. (2004): "Detailed 3D reconstruction of large-scale heritage sites with integrated techniques", in Computer Graphics and Applications, Vol. 24, N. 3, 2004, pp. 21-29. http://dx.doi.org/10.1109/MCG.2004.1318815EL-HAKIM S.F., BERALDIN J.-A. (2007): "Sensor integration and visualization", in Fryer, Mitchell & Chandler (eds.), Applications of 3D Measurement from Images, Whittles Publishing, pp. 259-298.ENGLISH HERITAGE (2005): Metric Survey Specifications for English Heritage. English Heritage Report.ENGLISH HERITAGE (2011), 3D Laser Scanning for Heritage (second edition), English Heritage Publishing.FURUKAWA Y., PONCE J. (2010): "Accurate, dense, and robust multi-view stereopsis", in IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 32, N. 8, pp. 1362-1376. http://dx.doi.org/10.1109/TPAMI.2009.161GAIANI M., MICOLI L.L. (2005): "A framework to build and visualize 3D models from real world data for historical architecture and archaeology as a base for a 3D information system", in Forte M. (a cura di), The reconstruction of Archaeological Landscapes through Digital Technologies, BAR International series, 1379, pp. 103-125.GAIANI M., ROSSI M., RIZZI A. (2003): "Percezione delle immagini virtuali", in M. Gaiani (ed.), Metodi di Prototipazione Digitale e Visualizzazione per il Disegno Industriale, l'Architettura degli Interni e i Beni Culturali, Polidesign, Milano, 2003.GAIANI M., BENEDETTI B., REMONDINO F. (eds) (2010): Modelli digitali 3D in archeologia: il caso di Pompei, Edizioni della Normale, Pisa, 2010.GAŠPAROVIC M., MALARIC I. (2012): "Increase of readability and accuracy of 3D models using fusion of Close Range Photogrammetry and Laser Scanning", in ISPRS Arch. Photogramm. Remote Sens., Vol. XXXIX-B5, pp. 93-98.GODIN G., BORGEAT L., et al. (2010): "Issues in Acquiring, Processing and Visualizing Large and Detailed 3D Models", in Information Sciences and Systems (CISS), 44th Annual Conference on, pp.1-6. http://dx.doi.org/10.1109/ciss.2010.5464966GONIZZI BARSANTI S., MICOLI L.L., GUIDI G. (2013a): "Quick textured mesh generation for massive 3D digitization of museum artifacts", in DigitalHeritage 2013, Vol. 1, pp. 197-200.GONIZZI BARSANTI S., REMONDINO F., VISINTINI D. (2013b): "3D surveying and modeling of archaeological sites - some critical issues", in ISPRS Ann. Photogramm. Remote Sens., Vol. II-5/W1, 2013, pp. 145-150.GRUSSENMEYER P., LANDES T., et al. (2008): "Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings", in ISPRS Arch. Photogramm. Remote Sens., Vol. XXXVII/W5, pp. 213-218.GUARNIERI A., REMONDINO F., VETTORE A. (2006): "Digital photogrammetry and TLS data fusion applied to Cultural Heritage 3D modeling", in ISPRS Arch., Vol. XXXVI/W6, pp. 6.HAPPA J., BASHFORD-ROGERS T., et al. (2012): "Cultural Heritage Predictive Rendering", in Computer Graphics Forum, Vol. 31, N. 6, 2012, pp. 1823-1836. http://dx.doi.org/10.1111/j.1467-8659.2012.02098.xHIRSCHMÜLLER H. (2005): "Accurate and efficient stereo processing by semi-global matching and mututal information", in CVPR 2005 proceedings, Vol. 2, pp. 807-814.HIRSCHMUELLER H. (2008): "Stereo processing by semi- global matching and mutual information", in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, N. 2, pp. 328-41. http://dx.doi.org/10.1109/TPAMI.2007.1166KARSIDAG G., ALKAN R.M. (2012): "Analysis of The Accuracy of Terrestrial Laser Scanning Measurements", in FIG Working Week 2012 - Knowing to manage the territory, protect the environment, evaluate the cultural heritage proceedings, TS07A - Laser Scanners I, 6097.KAWAKAMI R., IKEUCHI K., TAN R.T. (2005): "Consistent surface color for texturing large objects in outdoor scenes", in ICCV 2005 proceedings, Vol. 2, 2005, pp. 1200-1207.IMATEST (2014), http://www.imatest.com/homeIMAGENOMIC LLC (2012): Noiseware 5 Plug-In User's Guide, 2012INNOVMETRIC POLYWORKS (2014): http://www.innovmetric.com/polyworks/Surveying/LENSCH H.P.A., KAUTZ J., et al. (2003): "Image-based reconstruction of spatial appearance and geometric detail", in ACM Trans. Graph., Vol. 22, N. 2, 2003, pp. 234-257. http://dx.doi.org/10.1145/636886.636891LOWE D. (2004): "Distinctive image features from scale-invariant keypoints", in IJCV, Vol. 60, N. 2, 2004, pp. 91-110.MESHLAB (2014): http://meshlab.sourceforge.net/MUDGE M., SCHROER C., et al. (2010): "Principles and Practices of Robust, Photography based Digital Imaging Techniques for Museums", in VAST 2010 Proceedings, 2010, pp. 111-137.NICODEMUS F. (1965): "Directional reflectance and emissivity of an opaque surface", in Applied Optics, Vol. 4, N. 7, 1965, pp. 767-775. http://dx.doi.org/10.1364/AO.4.000767OPENGL (2014): http://www.opengl.orgPASCALE D. (2006): "RGB coordinates of the Macbeth ColorChecker", in Technical report, The BabelColor Company, Jun 2006.PETROSYAN A., GHAZARYAN A. (2006): "Method and System for Digital Image Enhancement", in US Patent Application, #11/116, 408, 2006.PIERROT-DESEILLIGNY M., PAPARODITIS N. (2006): A multiresolution and optimization-based image matching approach: an application to surface reconstruction from SPOT5-HRS stereo imagery, in ISPRS Arch., Vol. XXXVI-1/W41.PIETRONI N., TARINI M., CIGNONI P. (2010): "Almost isometric mesh parameterization through abstract domains", in IEEE Trans. on Visualization and Computer Graphics, Vol. 16, N. 4, 2010, pp. 621-635. http://dx.doi.org/10.1109/TVCG.2009.96REINHARD E., ARIF KHAN E., OGUZ AKYÜZ A., JOHNSON G. (2008): Color Imaging Fundamentals and Applications, A. K. Peters, Wellesley.REMONDINO F., EL-HAKIM S. (2006): "Image-based 3D modelling: a review", in The Photogrammetric Record, Vol. 21, N.115, 2006, pp. 269-291. http://dx.doi.org/10.1111/j.1477-9730.2006.00383.xREMONDINO F., CAMPANA S., (eds.) (2014): 3D Recording and Modelling in Archaeology and Cultural Heritage, BAR International Series 2598, Archaeopress.REMONDINO F., GUARNIERI A., VETTORE A. (2005): "3D modeling of close-range objects: photogrammetry or laser scanning?", in Procceedings of Videometrics VIII, SPIE-IS&T Electronic Imaging, Vol. 5665, pp. 216-225. http://dx.doi.org/10.1117/12.586294REMONDINO F., EL-HAKIM S., et al. (2008a): "Development and performance analysis of image matching for detailed surface reconstruction of heritage objects", in IEEE Signal Processing Magazine, Vol. 25, N.4, pp. 55-65. http://dx.doi.org/10.1109/MSP.2008.923093REMONDINO F., EL-HAKIM S., GRUEN A., ZHANG L. (2008b): " Turning images into 3D models - Development and performance analysis of image matching for detailed surface reconstruction of heritage objects", in IEEE Signal Processing Magazine, Vol. 25, N.4, 2008, pp. 55-65. http://dx.doi.org/10.1109/MSP.2008.923093REMONDINO F., et al. (2012): "Low-Cost and Open-Source Solutions for Automated Image Orientation - A Critical Overview", in Euromed 2012 Proceedings, pp. 40-54. http://dx.doi.org/10.1007/978-3-642-34234-9_5RUSHMEIER H., BERNARDINI F. (1999): "Computing consistent normals and colors from photometric data," in 3DIM 1999 proceedings, pp. 99-108. http://dx.doi.org/10.1109/im.1999.805339SANTOPUOLI N., SECCIA L. (2008): "Il rilievo del colore nel campo dei beni culturali", in Trattato di Restauro Architettonico, UTET, 2008, Vol. X, pp. 141-163.SCOPIGNO R., CALLIERI M., et al. (2011): "3D Models for Cultural Heritage: Beyond Plain Visualization", in Computer , Vol. 44, N. 7, pp. 48-55.SCHWARTZ C., WEINMANN M., RUITERS R., KLEIN R. (2011): "Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage", in VAST 2011 Proceedings, 2011, pp. 25-32.SEITZ S.M., et al. (2006): "A comparison and evaluation of multi-view stereo reconstruction algorithms", in CVPR Proceedings, Vol. 1, 2006, pp. 519-528. http://dx.doi.org/10.1109/cvpr.2006.19SINHA S.N., POLLEFEYS M. (2005): "Multi-view reconstruction using photo-consistency and exact silhouette constraints: a maximum-flow formulation", in Proc. 10th ICCV, pp. 349-356. http://dx.doi.org/10.1109/iccv.2005.159STAMOS I., LIU L., et al. (2008): "Integrating automated range registration with multiview geometry for the photorealistic modelling of large-scale scenes", in International Journal of Computer Vision Vol. 78, N. 2-3, pp. 237-60. http://dx.doi.org/10.1007/s11263-007-0089-1STUMPFEL J., TCHOU C., et al. (2003): "Digital reunification of the Parthenon and its sculptures", in Proceedings of Virtual Reality, Archaeology and Cultural Heritage (VAST) 2003, pp. 41-50.TOMASI C., KANADE T. (1992): "Shape and motion from image streams under orthography - a factorization method", in IJCV, Vol. 9, N. 2, 1992, pp. 137-154.TROCCOLI A., ALLEN P.K. (2005): "Relighting acquired models of outdoor scenes", in 3DIM 2005 proceedings, pp. 245-252. http://dx.doi.org/10.1109/3dim.2005.69VOSSELMAN G., MAAS H. (2010): Airborne and Terrestrial Laser Scanning, CRC Press.VOGIATZIS G., HERNANDEZ C., et al. (2007): "Multi-view stereo via volumetric graph-cuts and occlusion robust photo-consistency", in IEEE Trans. PAMI, Vol. 29, N. 12, pp. 2241-2246. http://dx.doi.org/10.1109/TPAMI.2007.70712VU H.H., LABATUT P., et al. (2012): "High accuracy and visibility-consistent dense multiview stereo", in IEEE Trans. PAMI, Vol. 34, N. 5, pp. 889-901. http://dx.doi.org/10.1109/TPAMI.2011.172WENZEL K., ABDEL-WAHAB M., et al., (2012): "High-Resolution Surface Reconstruction from Imagery for Close Range Cultural Heritage Applications", in ISPRS Arch., Vol. XXXIX-B5, pp. 133-138.WU C. (2013): "Towards Linear-Time Incremental Structure from Motion", in 3D Vision, 2013 International Conference on, 2013, pp.127-134. http://dx.doi.org/10.1109/3dv.2013.25XU C., A. GEORGHIADES S., et al. (2006): "A System for Reconstructing Integrated Texture Maps for Large Structures", in 3DPVT'06 proceedings, 2006, pp.822-829.YU Y., MALIK J. (1998): "Recovering photometric properties of architectural scenes from photographs", in SIGGRAPH '98 proceedings, 1998, pp. 207-217.ZHANG L. (2005): "Automatic Digital Surface Model (DSM) generation from linear array images", Ph.D. Thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland.ZHAO X., ZHOU Z., WU W. (2012): "Radiance-based color calibration for image-based modeling with multiple cameras", in Science China Information Sciences, Vol. 55, N. 7, 2012, pp. 1509-1519

    NonDestructive Techniques for the Assessment and Preservation of Historic Structures

    Get PDF
    The preservation of the built heritage has long been a public concern, mainly due to fears about the loss of identity, history and heritage of populations. The main concerns are the conservation and restoration of monuments that usually represent important events in the history of a city or a country. More recently, urban residents and policymakers have become aware of the abandonment or degradation of old city cores, leading to mischaracterisation of the buildings and ways of living. To preserve history and promote building and urban renewal, considering the basic principles of the preservation process, it is important to introduce the least possible disturbance. To start with, the diagnostic process is a key aspect, especially to investigate the construction characteristics and the damage to materials, and to find structural and nonstructural problems. To start any process, a visual inspection, a study and knowledge of the original construction methods and materials and historical repair techniques can help but may not be sufficient, and the use of conventional techniques to complement the information needed can result in an insufficient understanding or in extensive and unnecessary intrusions in the construction. In recent years, the rapid growth of science and research, combined with the industry and the need to gather more and accurate information, have led to the fast development of nondestructive testing methodologies that allow the architectural archaeology to be studied, the structural assessment to be supported and information to be given about the material properties. Each technique can be used for a specific purpose, but, in some cases, only a combination of techniques is reliable and gives an accurate interpretation of the data acquired. The fundamental contribution and aim of this book is to give a full overview of several case studies where different nondestructive techniques have been applied, in several cases using multidisciplinary approaches, which aim to highlight the importance of the information acquired and encourage the use of these techniques in future studies. The book brings together 16 chapters focused on nondestructive testing techniques applied at the urban building level and also applied to monumental buildings, archaeology and cultural heritage, bringing together more than 40 international researchers and experts in the field, who are the source of practical case studies supported by a theoretical background.info:eu-repo/semantics/publishedVersio

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    TLS MODELS GENERATION ASSISTED BY UAV SURVEY

    Get PDF
    By now the documentation and 3D modelling activities of built heritage concern in an almost usual way terrestrial Lidar techniques (TLS, Terrestrial Laser Scanning), and large scale mapping derived by UAV (Unmanned Aerial Vehicle) survey. This paper refers an example of 3D survey and reality based modelling applied on landscape and architectural assets. The choice of methods for documentation, in terms of survey techniques, depends primarily on issues and features of the area. The achieved experience, allow to consider that the easy handling of TLS has enabled the use in limited spaces among buildings and collapsed roofs, but the topographic measure of GCPs (Ground Control Points), neither by total station nor by GPS/RTK technique, was easily feasible. Even more than proving the ability of the integration of TLS and UAV photogrammetry to achieve a multi-source and multi-scale whole model of a village, the experience has been a test to experiment the registration of terrestrial clouds with the support of control points derived by UAV survey and finally, a comparison among different strategies of clouds registration is reported. Analysing for each approach a number of parameters (number of clouds registration, number of needed points, processing time, overall accuracy) the further comparisons have been achieved. The test revealed that it is possible to decrease the large number of terrestrial control points when their determination by topographical measures is difficult, and it is possible to combine the techniques not only for the integration of the final 3Dmodel, but also to solve and make the initial stage of the drafting process more effective

    Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals

    Get PDF
    Cultural Heritage (CH) is recognised as being of historical, social, and anthropological value and is considered as an enabler of sustainable development. As a result, it is included in the United Nations' Sustainable Development Goals (SDGs) 11 and 8. SDG 11.4 emphasises the protection and safeguarding of heritage, and SDG 8.9 aims to promote sustainable tourism that creates jobs and promotes local culture and products. This paper briefly reviews the geoinformatics technologies of photogrammetry, remote sensing, and spatial information science and their application to CH. Detailed aspects of CH-related SDGs, comprising protection and safeguarding, as well as the promotion of sustainable tourism are outlined. Contributions of geoinformatics technologies to each of these aspects are then identified and analysed. Case studies in both developing and developed countries, supported by funding directed at the UN SDGs, are presented to illustrate the challenges and opportunities of geoinformatics to enhance CH protection and to promote sustainable tourism. The potential and impact of geoinformatics for the measurement of official SDG indicators, as well as UNESCO's Culture for Development Indicators, are discussed. Based on analysis of the review and the presented case studies, it is concluded that the contribution of geoinformatics to the achievement of CH SDGs is necessary, significant and evident. Moreover, following the UNESCO initiative to introduce CH into the sustainable development agenda and related ICOMOS action plan, the concept of Sustainable Cultural Heritage is defined, reflecting the significance of CH to the United Nations' ambition to "transform our world"

    Fine Art Pattern Extraction and Recognition

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open access journal Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/special issues/faper2020)

    On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context.

    Get PDF
    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of un- ordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with \u2018reference\u2019 data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cath\ue9drale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy
    • …
    corecore