38 research outputs found

    Roadmap on multimode photonics

    Get PDF
    Multimode devices and components have attracted considerable attention in the last years, and different research topics and themes have emerged very recently. The multimodality can be seen as an additional degree of freedom in designing devices, thus allowing for the development of more complex and sophisticated components. The propagation of different modes can be used to increase the fiber optic capacity, but also to introduce novel intermodal interactions, as well as allowing for complex manipulation of optical modes for a variety of applications. In this roadmap we would like to give to the readers a comprehensive overview of the most recent developments in the field, presenting contributions coming from different research topics, including optical fiber technologies, integrated optics, basic physics and telecommunications

    Orbital angular momentum in optical fibers

    Full text link
    Thesis (Ph.D.)--Boston UniversityInternet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multimode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist, and be long lived, in a special class of fibers and our data transmission demonstrations show that OAM could be considered an additional degree of freedom for data multiplexing in future optical fiber communication links. Our studies open the doors for other applications such as micro-endoscopy and nanoscale imaging which require fiber based remote delivery of OAM light

    Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing

    Get PDF
    L'augmentation exponentielle de la demande de bande passante pour les communications laisse prĂ©sager une saturation prochaine de la capacitĂ© des rĂ©seaux de tĂ©lĂ©communications qui devrait se matĂ©rialiser au cours de la prochaine dĂ©cennie. En effet, la thĂ©orie de l’information prĂ©dit que les effets non linĂ©aires dans les fibres monomodes limite la capacitĂ© de transmission de celles-ci et peu de gain Ă  ce niveau peut ĂȘtre espĂ©rĂ© des techniques traditionnelles de multiplexage dĂ©veloppĂ©es et utilisĂ©es jusqu’à prĂ©sent dans les systĂšmes Ă  haut dĂ©bit. La dimension spatiale du canal optique est proposĂ©e comme un nouveau degrĂ© de libertĂ© qui peut ĂȘtre utilisĂ© pour augmenter le nombre de canaux de transmission et, par consĂ©quent, rĂ©soudre cette menace de «crise de capacité». Ainsi, inspirĂ©e par les techniques micro-ondes, la technique Ă©mergente appelĂ©e multiplexage spatial (SDM) est une technologie prometteuse pour la crĂ©ation de rĂ©seaux optiques de prochaine gĂ©nĂ©ration. Pour rĂ©aliser le SDM dans les liens de fibres optiques, il faut rĂ©examiner tous les dispositifs intĂ©grĂ©s, les Ă©quipements et les sous-systĂšmes. Parmi ces Ă©lĂ©ments, l'amplificateur optique SDM est critique, en particulier pour les systĂšmes de transmission pour les longues distances. En raison des excellentes caractĂ©ristiques de l'amplificateur Ă  fibre dopĂ©e Ă  l'erbium (EDFA) utilisĂ© dans les systĂšmes actuels de pointe, l'EDFA est Ă  nouveau un candidat de choix pour la mise en Ɠuvre des amplificateurs SDM pratiques. Toutefois, Ă©tant donnĂ© que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs Ă  fibre dopĂ©e Ă  l'erbium spatialement intĂ©grĂ©s (SIEDFA) nĂ©cessitent une conception soignĂ©e. Dans cette thĂšse, nous examinons tout d'abord les progrĂšs rĂ©cents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite Ă  cela, la thĂ©orie des EDFA est briĂšvement prĂ©sentĂ©e et une modĂ©lisation numĂ©rique pouvant ĂȘtre utilisĂ©e pour simuler les SIEDFA est proposĂ©e. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres Ă  quelques-modes dopĂ©es Ă  l'erbium (ED-FMF) et nous Ă©valuons numĂ©riquement la performance d’un amplificateur Ă  un Ă©tage, avec fibre Ă  dopage annulaire, Ă  ainsi qu’un amplificateur Ă  double Ă©tage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopĂ©es Ă  l'erbium avec une gaine annulaire et multi-cƓurs (ED-MCF). Nous avons Ă©valuĂ© numĂ©riquement le recouvrement de la pompe avec les multiples cƓurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractĂ©risons une fibre multi-cƓurs Ă  quelques modes dopĂ©es Ă  l'erbium. Nous rĂ©alisons la premiĂšre dĂ©monstration des amplificateurs Ă  fibre optique spatialement intĂ©grĂ©s incorporant de telles fibres dopĂ©es. Enfin, nous prĂ©sentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le dĂ©veloppement des SIEDFA offriront d'Ă©normes avantages non seulement pour les systĂšmes de transmission future SDM, mais aussi pour les systĂšmes de transmission monomode sur des fibres standards Ă  un cƓur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intĂ©grĂ©.The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier

    Mode Coupling in Space-division Multiplexed Systems

    Get PDF
    Even though fiber-optic communication systems have been engineered to nearly approach the Shannon capacity limit, they still cannot meet the exponentially-growing bandwidth demand of the Internet. Space-division multiplexing (SDM) has attracted considerable attention in recent years due to its potential to address this capacity crunch. In SDM, the transmission channels support more than one spatial mode, each of which can provide the same capacity as a single-mode fiber. To make SDM practical, crosstalk among modes must be effectively managed. This dissertation presents three techniques for crosstalk management for SDM. In some cases such as intra-datacenter interconnects, even though mode crosstalk cannot be completely avoided, crosstalk among mode groups can be suppressed in properly-designed few-mode fibers to support mode group-multiplexed transmission. However, in most cases, mode coupling is unavoidable. In free-space optical (FSO) communication, mode coupling due to turbulence manifests as wavefront distortions. Since there is almost no modal dispersion in FSO, we demonstrate the use of few-mode pre-amplified receivers to mitigate the effect of turbulence without using adaptive optics. In fiber-optic communication, multi-mode fibers or long-haul few-mode fibers not only suffer from mode crosstalk but also large modal dispersion, which can only be compensated electronically using multiple-input-multiple-output (MIMO) digital signal processing (DSP). In this case, we take the counterintuitive approach of introducing strong mode coupling to reduce modal group delay and DSP complexity

    Scaling of the Number of Modes in Mode Division Multiplexing Systems

    Get PDF
    We review our recent advances on the design of multimode fibres with hundreds of spatial pathways for reduced differential mode delay in the C-band and on the development of adaptable spatial multiplexing techniques to enable scalability of all data pathways

    Mode Evolution in Fiber Based Devices for Optical Communication Systems

    Get PDF
    Space division multiplexing (SDM) is the most promising way of increasing the capacity of a single fiber. To enable the few mode fiber (FMF) or multi-mode fiber (MMF) transmission system, several major challenges have to be overcome. One is the urgent need of ideal mode multiplexer, the second is the perfect amplification for all spatial modes, another one is the modal delay spread (MDS) due to group velocity difference of spatial modes. The main subject of this dissertation is to model, fabricate and characterize the mode multiplexer for FMF transmission. First, we designed a novel resonant mode coupler (structured directional coupler pair). After that, we studied the adiabatic mode multiplexer (photonic lantern). 6-mode photonic lantern using graded-index (GI) MMFs is proposed and demonstrated, which alleviates the adiabatic require-ment and improves mode selectivity. Then, 10-mode photonic lantern is demonstrated using novel double cladding micro-structured drilling-hole preform, which alleviates the adiabatic requirement and demonstrate a feasible way to scale up the lantern modes. Also, multi-mode photonic lantern is studied for high order input modes. In addition, for the perfect amplification of the modes, cladding pump method is demonstrated. The mode selective lantern designed and fabricated can be used for the characterization of few mode amplifier with swept wavelength interferometer (SWI). Also, we demonstrated the application of the use of the few mode amplifier for the turbulence-resisted preamplified receiver. Besides, for the reduction of MDS, the long period grating for introducing strong mode mixing is demonstrated

    On a Scalable Path for Multimode SDM Transmission

    Get PDF
    We investigate transceiver design and digital signal processing for spatially multiplexed transmission over multimode fibers. In conventional architectures, the full spatial domain of the transmission fiber has to be detected and processed such that the modal walk-off and mixture can be estimated and equalized. These architectures scale poorly with the number of modes supported, besides the sparsity of the fiber transfer matrix is not fully exploited. Instead, here we aim to employ selective mode vector launch and detection in order to minimize the number of optical front-ends required. In this case, an ideal basis for multiplexing is offered by principal modes, that to first order are frequency independent. We show that such mode vector basis can be used for full baud rate transmission over inter-data center distances despite limited coherence bandwidth and vulnerability to environmental-induced drift of the optical channel. It is shown that crosstalk at the receiver front-end can be significantly suppressed, critically reducing the number of coherent receiver front-ends to that of spatial tributaries aimed for data transmission - as opposed to the total number of fiber modes. Residual crosstalk can still be experienced due to environmental-induced channel drift and loss of orthogonality in presence of mode dependent loss. Multiple-input single-output digital signal processing is shown to be effective in this case, with the required equalizer array size scaling sub-linearly with the number of tributaries. A multimode fiber with 156 spatial and polarization modes and optimized for low modal dispersion is considered

    Design and characterization of few-mode fibers for space division multiplexing on fiber eigenmodes

    Get PDF
    La croissance constante et exponentielle de la demande de trafic de donnĂ©es Internet conduit nos rĂ©seaux de tĂ©lĂ©communications optiques, principalement composĂ©s de liaisons de fibre monomode, Ă  une pĂ©nurie imminente de capacitĂ©. La limite non linĂ©aire de la fibre monomode, prĂ©dite par la thĂ©orie de l'information, ne laisse aucune place Ă  l'amĂ©lioration de la capacitĂ© de communication par fibre optique. Dans ce contexte, la prochaine technologie de rupture dans les transmissions optiques Ă  haute capacitĂ© devrait ĂȘtre le multiplexage par rĂ©partition spatiale (SDM). La base du SDM consiste Ă  utiliser diffĂ©rents canaux spatiaux d'une seule fibre optique pour transmettre des donnĂ©es indĂ©pendantes. Le SDM fournit ainsi une augmentation de la capacitĂ© de transport de donnĂ©es d'un facteur qui dĂ©pend du nombre de chemins spatiaux qui sont Ă©tablis. Une façon de rĂ©aliser le SDM consiste Ă  utiliser des fibres faiblement multimodes (FMF) spĂ©cialisĂ©es, conçues pour prĂ©senter un couplage faible entre les modes guidĂ©s. Un traitement MIMO rĂ©duit peut alors ĂȘtre utilisĂ© pour annuler le couplage rĂ©siduel des modes. Dans cette thĂšse, nous donnons tout d'abord un aperçu des progrĂšs rĂ©cents du multiplexage par rĂ©partition de modes (MDM). Les modes Ă  polarisation linĂ©aire (LP), les modes de moment angulaire orbital (OAM) et les modes vectoriels reprĂ©sentent diffĂ©rentes bases de modes orthogonaux possibles dans la fibre. Nous comparons les travaux utilisant ces modes en termes de conception de fibre proposĂ©e, nombre de modes, complexitĂ© MIMO et rĂ©sultats expĂ©rimentaux de transmission de donnĂ©es. Ensuite, nous introduisons la modĂ©lisation de la fibre optique rĂ©alisĂ©e avec les solveurs numĂ©riques de COMSOL Multiphysics, et nous discutons de quelques travaux utilisant cette modĂ©lisation de fibre. Nous proposons une nouvelle FMF, composĂ©e d'un noyau hautement elliptique et d'une tranchĂ©e adjacente ajoutĂ©e pour rĂ©duire la perte de courbure des modes d'ordre supĂ©rieur. La fibre est conçue et optimisĂ©e pour prendre en charge cinq modes spatiaux avec une dĂ©gĂ©nĂ©rescence de polarisation double, pour un total de dix canaux. La fibre proposĂ©e montre une diffĂ©rence d'indice effectif entre les modes spatiaux supĂ©rieure Ă  1 × 10-3sur la bande C. Ensuite, nous fabriquons la fibre avec un procĂ©dĂ© standard de dĂ©pĂŽt chimique en phase vapeur modifiĂ© (MCVD), et nous caractĂ©risons la fibre en laboratoire. La caractĂ©risation expĂ©rimentale a rĂ©vĂ©lĂ© que la fibre prĂ©sente une propriĂ©tĂ© de maintien de polarisation. Ceci est obtenu grĂące Ă  la combinaison de la structure centrale asymĂ©trique et de la contrainte thermique introduite lors de la fabrication. Nous mesurons la birĂ©fringence avec une technique de rĂ©seau de Bragg inscrit dans la fibre (FBG). En incluant la contrainte thermique dans notre modĂ©lisation de fibre, un bon accord est obtenu entre la birĂ©fringence simulĂ©e et mesurĂ©e. Nous avons rĂ©ussi Ă  effectuer la premiĂšre transmission de donnĂ©es sur la fibre proposĂ©e, en transmettant deux signaux QPSK sur les deux polarisations de chaque mode spatial, sans utiliser de traitement MIMO. Enfin, nous prĂ©sentons une amĂ©lioration d'une technique d'interfĂ©romĂ©trie hyperfrĂ©quence (MICT) prĂ©cĂ©demment proposĂ©e, afin de mesurer expĂ©rimentalement la perte en fonction du mode (MDL) des groupes de modes FMF. En conclusion, nous rĂ©sumons les rĂ©sultats et prĂ©sentons les perspectives d'avenir de cette recherche. En rĂ©sumĂ©, de nouveaux FMF doivent ĂȘtre Ă©tudiĂ©s si nous voulons rĂ©soudre la pĂ©nurie imminente de capacitĂ© de nos technologies systĂšme. Les rĂ©sultats de cette thĂšse indique que le FMF Ă  maintien de polarisation proposĂ©e dans cette recherche reprĂ©sente une amĂ©lioration significative dans le domaine des systĂšmes de transmission MDM sans MIMO pour des liaisons de communication courtes ; c’est-Ă -dire distribuant des donnĂ©es sur une longueur infĂ©rieure Ă  10 km. Nous espĂ©rons que ce travail conduira au dĂ©veloppement de nouveaux composants SD Mutilisant cette fibre, tels que de nouveaux amplificateurs Ă  fibre, ou de nouveaux multiplexeurs/dĂ©multiplexeurs, comme par exemple des coupleurs en mode fibre fusionnĂ©e ou des dispositifs photoniques au silicium.The constant and exponential growth of Internet data traffic demand is driving our optical telecommunication networks, mainly composed of single-mode fiber links, to an imminent capacity shortage. The nonlinear limit of the single-mode fiber, predicted by the information theory, leave no room for optical fiber communication capacity improvements. In this direction, the next disruptive technology in high-capacity communication transmissions is expected to be Space Division Multiplexing (SDM). The basic of SDM consists of using different spatial channels of a single optical fiber to transmit information data. SDM thus provides an increase in the data-carrying capacity by a factor that depends on the number of spatial paths that are established. A way to realize SDM is through the use of specialty few-mode fibers (FMFs), designed to have a weak coupling between the guided modes. A reduced MIMO processing can be used to undo the residual mode coupling. In this thesis, we firstly give an overview of the recent progress in mode division multiplexing (MDM). Linearly polarized (LP) modes, orbital angular momentum (OAM) modes and vector modes represent the possible orthogonal modes guided into the fiber. We compare works, making use of those modes, in terms of proposed fiber design, number of modes, MIMO complexity and data transmission experiments. After that, we introduce the optical fiber modelling performed with the numerical solvers of COMSOL Multiphysics, and we discuss some works making use of this fiber modelling. Next, we propose a novel FMF, composed of a highly elliptical core and a surrounding trench added to reduce the bending loss of the higher order modes. The fiber is designed and optimized to support five spatial modes with twofold polarization degeneracy, for a total of ten channels. The proposed fiber shows an effective index difference between the spatial modes higher than 1×10-3 over the C-band. Afterwards, we fabricate the fiber with standard modified chemical vapor deposition (MCVD) process, and we characterize the fiber in the laboratory. The experimental characterization revealed the polarization maintaining properties of the fiber. This is obtained with the combination of the asymmetric core structure and the thermal stress introduced during the fabrication. We measure the birefringence with a fiber Bragg grating (FBG) technique, and we included the thermal stress in our fiber modelling. A good agreement was found between the simulated and measured birefringence. We successfully demonstrate the first data transmission over the proposed fiber, by transmitting two QPSK signals over the two polarizations of each spatial mode, without the use of any MIMO processing. Lastly, we present an improvement of a previously proposed microwave interferometric technique (MICT), in order to experimentally measure the mode dependent loss (MDL) of FMF mode groups. Finally, we present the conclusions and the future perspectives of this research. To conclude, novel FMFs need to be investigated if we want to solve the imminent capacity shortage of our system technologies. We truly believe that the polarization-maintaining FMF proposed in this research represents a significant improvement to the field of MIMO-free MDM transmission systems for short communication links, distributing data over length less than 10 km. We hope that this work will drive the development of new SDM components making use of this fiber, such as new fiber amplifiers, or new mux/demux, as for example fused fiber mode couplers or silicon photonic devices
    corecore