10,103 research outputs found

    Framework for waveband switching in multigranular optical networks: part I-multigranular cross-connect architectures

    Get PDF
    Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks

    Logic Programming approaches for routing fault-free and maximally-parallel Wavelength Routed Optical Networks on Chip (Application paper)

    Get PDF
    One promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip (ONoCs). Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming (ASP). In this work, we detail the ASP approach we used to solve such problem. Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains (CLP(FD)). This paper is under consideration for possible publication on Theory and Practice of Logic Programming.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 pages, LaTeX, 5 figure

    Optical IP switching a solution to dynamic lightpath establishment in disaggregated network architectures

    Get PDF
    The landscape of the telecommunications environment is constantly evolving; in terms of architecture and increasing data-rate. Ensuring that routing decisions are taken at the lowest possible layer offers the possibility of greatest data throughput. We propose using wavelengths in a DWDM scheme as dedicated channels that bypass the routing lookup in a router. The future trend of telecommunications industry is, however, toward larger numbers of interlinked competing operator networks. This in turn means there is a lack of a unified control plane to allow current networks to dynamically provision optical paths. This paper will report on the concept of optical IP switching. This concept seeks to address optical control plane issues in disaggregated networks while providing a means to dynamically provision optical paths to cater for large data flows

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version
    corecore