195,419 research outputs found

    Fluorescence microscopy tensor imaging representations for large-scale dataset analysis

    Get PDF
    Understanding complex biological systems requires the system-wide characterization of cellular and molecular features. Recent advances in optical imaging technologies and chemical tissue clearing have facilitated the acquisition of whole-organ imaging datasets, but automated tools for their quantitative analysis and visualization are still lacking. We have here developed a visualization technique capable of providing whole-organ tensor imaging representations of local regional descriptors based on fluorescence data acquisition. This method enables rapid, multiscale, analysis and virtualization of large-volume, high-resolution complex biological data while generating 3D tractographic representations. Using the murine heart as a model, our method allowed us to analyze and interrogate the cardiac microvasculature and the tissue resident macrophage distribution and better infer and delineate the underlying structural network in unprecedented detail

    Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Get PDF
    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions

    Modeling Surfaces from Volume Data Using Nonparallel Contours

    Get PDF
    Magnetic resonance imaging: MRI) and computed tomography: CT) scanners have long been used to produce three-dimensional samplings of anatomy elements for use in medical visualization and analysis. From such datasets, physicians often need to construct surfaces representing anatomical shapes in order to conduct treatment, such as irradiating a tumor. Traditionally, this is done through a time-consuming and error-prone process in which an experienced scientist or physician marks a series of parallel contours that outline the structures of interest. Recent advances in surface reconstruction algorithms have led to methods for reconstructing surfaces from nonparallel contours that could greatly reduce the manual component of this process. Despite these technological advances, the segmentation process has remained unchanged. This dissertation takes the first steps toward bridging the gap between the new surface reconstruction technologies and bringing those methods to use in clinical practice. We develop VolumeViewer, a novel interface for modeling surfaces from volume data by allowing the user to sketch contours on arbitrarily oriented cross-sections of the volume. We design the algorithms necessary to support nonparallel contouring, and we evaluate the system with medical professionals using actual patient data. In this way, we begin to understand how nonparallel contouring can aid the segmentation process and expose the challenges associated with a nonparallel contouring system in practice

    Building on eWOM to Understand Service Quality in Hotel Services

    Get PDF
    In recent years the volume and the reach of available online content in the form of electronic word-of-mouth (eWOM) has grown at an unprecedented pace. eWOM exerts an important influence for consumption decisions of consumers, and is acknowledged to be more accessible and trustworthy than other commercial information provided by companies by means of advertising and sales. The sophistication and widespread of communication technologies is making the volume of information released online by customers to become overwhelming. For consumers and for business managers alike, making sense of the available information is a challenge that needs to be met urgently in order to keep the pace with the expectations of consumers whom, as engaged providers of feedback require their observations to be taken into account. This advances with a contribution to support the development of methods for the analysis and visualization information from online sources, by adapting an importance-performance analysis for identifying salient quality attributes from eWOM, offering an efficient approach for extracting information and identifying priorities for service improvement

    Stepping into the Third Dimension

    Get PDF
    Recent advances in optical-sectioning microscopy, along with novel fluorescent proteins and probes, give us the tools to image molecules and their interactions in space and time. Investigators using these tools routinely collect multichannel three-dimensional (3D) images and time series, but analyzing such complex datasets requires sophisticated visualization techniques. We here provide an overview of the principles and practices of 3D visualization of multichannel microscopic data. We also describe ImageSurfer, a new software package for volume visualization and data analysis. ImageSurfer is freely available (www.imagesurfer.org) and provides powerful interactive tools to explore and analyze complex multichannel 3D datasets. Although ImageSurfer is designed with fluorescent microscopy in mind, it is also effective for other types of data, including 3D datasets acquired by functional magnetic resonance imaging and EM tomography

    Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    Get PDF
    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license

    Do Sequels Outperform or Disappoint? Insights from an Analysis of Amazon Echo Consumer Reviews

    Get PDF
    Rapid technological advances in recent years drastically transformed our world. Amidst modern technological inventions such as smart phones, smart watches and smart home devices, consumers of electronic digital devices experience greatly improved automation, productivity, and efficiency in conducting routine daily tasks, information searching, shopping as well as finding entertainment. In the last few years, the global smart speaker market has undergone significant growth. As technology continues to advance and smart speakers are equipped with innovative features, the adoption of smart speakers will increase and so will consumer expectations. This research paper presents an aspect-specific sentiment analysis of consumer reviews of the first three generations of Amazon Echo. Our text mining and aspect-specific sentiment analyses reveal that price, sound, smart home, connectivity, and comparison are outperforming aspects whereas voice, app, Q&A, companionship, and shelf life are disappointing and sunsetting aspects. Our study demonstrates a novel cross-generation visualization of directional changes in consumer sentiment using the Bollinger Bands and volume charts
    corecore