217,447 research outputs found

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    To Develop and Implement Low Power, High Speed VLSI for Processing Signals using Multirate Techniques

    Get PDF
    Multirate technique is necessary for systems with different input and output sampling rates. Recent advances in mobile computing and communication applications demand low power and high speed VLSI DSP systems [4]. This Paper presents Multirate modules used for filtering to provide signal processing in wireless communication system. Many architecture developed for the design of low complexity, bit parallel Multiple Constant Multiplications operation which dominates the complexity of DSP systems. However, major drawbacks of present approaches are either too costly or not efficient enough. On the other hand, MCM and digit-serial adder offer alternative low complexity designs, since digit-serial architecture occupy less area and are independent of the data word length [1][10]. Multiple Constant Multiplications is efficient way to reduce the number of addition and subtraction in polyphase filter implementation. This Multirate design methodology is systematic and applicable to many problems. In this paper, attention has given to the MCM & digit serial architecture with shifting and adding techniques that offers alternative low complexity in operations. This paper also focused on Multirate Signal Processing Modules using Voltage and Technology scaling. Reduction of power consumption is important for VLSI system and also it becomes one of the most critical design parameter. Transistorized Multirate module which has full custom design with different circuit topology and optimization level simulated on cadence platform. Multirate modules are used AMI 0.6 um, TSMC 0.35 um, and TSMC 0.25 um technologies for different voltage scaling. The presented methodology provides a systematic way to derive circuit technique for high speed operation at a low supply voltage. Multirate polyphase interpolator and decimator are also designed and optimized at architectural level in order to analyze the terms power consumption, area and speed. DOI: 10.17762/ijritcc2321-8169.150314

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Efficient FPGA implementation of high-throughput mixed radix multipath delay commutator FFT processor for MIMO-OFDM

    Get PDF
    This article presents and evaluates pipelined architecture designs for an improved high-frequency Fast Fourier Transform (FFT) processor implemented on Field Programmable Gate Arrays (FPGA) for Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM). The architecture presented is a Mixed-Radix Multipath Delay Commutator. The presented parallel architecture utilizes fewer hardware resources compared to Radix-2 architecture, while maintaining simple control and butterfly structures inherent to Radix-2 implementations. The high-frequency design presented allows enhancing system throughput without requiring additional parallel data paths common in other current approaches, the presented design can process two and four independent data streams in parallel and is suitable for scaling to any power of two FFT size N. FPGA implementation of the architecture demonstrated significant resource efficiency and high-throughput in comparison to relevant current approaches within literature. The proposed architecture designs were realized with Xilinx System Generator (XSG) and evaluated on both Virtex-5 and Virtex-7 FPGA devices. Post place and route results demonstrated maximum frequency values over 400 MHz and 470 MHz for Virtex-5 and Virtex-7 FPGA devices respectively

    Benchmarking CPUs and GPUs on embedded platforms for software receiver usage

    Get PDF
    Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version
    • …
    corecore