587 research outputs found

    Proceedings of SAT Competition 2018 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    A PRISMA-driven systematic mapping study on system assurance weakeners

    Full text link
    Context: An assurance case is a structured hierarchy of claims aiming at demonstrating that a given mission-critical system supports specific requirements (e.g., safety, security, privacy). The presence of assurance weakeners (i.e., assurance deficits, logical fallacies) in assurance cases reflects insufficient evidence, knowledge, or gaps in reasoning. These weakeners can undermine confidence in assurance arguments, potentially hindering the verification of mission-critical system capabilities. Objectives: As a stepping stone for future research on assurance weakeners, we aim to initiate the first comprehensive systematic mapping study on this subject. Methods: We followed the well-established PRISMA 2020 and SEGRESS guidelines to conduct our systematic mapping study. We searched for primary studies in five digital libraries and focused on the 2012-2023 publication year range. Our selection criteria focused on studies addressing assurance weakeners at the modeling level, resulting in the inclusion of 39 primary studies in our systematic review. Results: Our systematic mapping study reports a taxonomy (map) that provides a uniform categorization of assurance weakeners and approaches proposed to manage them at the modeling level. Conclusion: Our study findings suggest that the SACM (Structured Assurance Case Metamodel) -- a standard specified by the OMG (Object Management Group) -- may be the best specification to capture structured arguments and reason about their potential assurance weakeners

    Proceedings of SAT Competition 2016 : Solver and Benchmark Descriptions

    Get PDF
    Peer reviewe

    Proceedings of SAT Competition 2017 : Solver and Benchmark Descriptions

    Get PDF

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance
    corecore