7,291 research outputs found

    Hidden Terminal-Aware Contention Resolution with an Optimal Distribution

    Get PDF
    Achieving low-power operation in wireless sensor networks with high data load or bursty traffic is challenging. The hidden terminal problem is aggravated with increased amounts of data in which traditional backoff-based contention resolution mechanisms fail or induce high latency and energy costs. We analyze and optimize Strawman, a receiver-initiated contention resolution mechanism that copes with hidden terminals. We propose new techniques to boost the performance of Strawman while keeping the resolution overhead small. We finally validate our improved mechanism via experiments

    A low-power opportunistic communication protocol for wearable applications

    Get PDF
    © 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table
    • …
    corecore