742 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Hunting the hunters:Wildlife Monitoring System

    Get PDF

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Multi-channel Communication in Wireless Networks

    Get PDF
    Multi-channel communication has been developed to overcome some limitations related to the throughput and delivery rate which become necessary for many applications that require sufficient bandwidth to transmit a large amount of data in Wireless Networks (WNs) such as multimedia communication. However, the requirement of frequent negotiation for the channels assignment process incurs extra-large communication overhead and collisions, which results in the reduction of both communication quality and network lifetime. This effect can play an important role in the performance deterioration of certain WNs types, especially the Wireless Sensor Networks (WSNs) since they are characterized by their limited resources. This work addresses the improvement of communication in multi-channel WSNs. Consequently, four protocols are proposed. The first one is the Multi-Channel Scheduling Protocol (MCSP) for wireless personal networks IEEE802.15.4, which focuses on overcoming the collisions problem through a multi-channel scheduling scheme. The second protocol is the Energy-efficient Reinforcement Learning (RL) Multi-channel MAC (ERL MMAC) for WSNs, which bases on the enhancement of the energy consumption in WSNs by reducing collisions and balancing the remaining energy between the nodes using a singleagent RL. The third work is the proposition of a new heuristically accelerated RL protocol named Heuristically Accelerated Reinforcement Learning approach for Channel Assignment (HARL CA) for WSNs to reduce the number of learning iterations in an energy-efficient way taking into account the bandwidth aspect in the scheduling process. Finally, the fourth contribution represents a proposition of a new cooperative multi-agent RL approach for Channel Assignment (CRLCA) in WSNs, which improves cooperative learning using an accelerated learning model, and overcomes the extra communication overhead problem of the cooperative RL using a new method for self-scheduling and energy balancing. The proposed approach is performed through two algorithms SCRLCA and DCRLCA for Static and Dynamic performance respectively. The proposed protocols and techniques have been successfully evaluated and show outperformed results in different cases through several experiments
    corecore