154 research outputs found

    Receiver Algorithms for Single-Carrier OSM Based High-Rate Indoor Visible Light Communications

    Get PDF
    In intensity-modulation and direct-detection (IM/DD) multiple-input and multiple-output (MIMO) visible light communication (VLC) systems, spatial subchannels are usually correlated, and spatial modulation is a good choice to achieve the advantages of MIMO technology. Peak-to-average power ratio (PAPR) is a key issue in VLCs due to the limited linear dynamic range of light emitting diodes (LEDs). Single-carrier communication systems have a lower PAPR than orthogonal frequency division multiplexing (OFDM) communication systems. However, it is challenging to design a single-carrier spatial modulation for high-rate transmissions because of the time domain intersymbol interference. This paper develops an optical spatial modulation (OSM) scheme based on bipolar pulse amplitude modulation (PAM) and spatial elements for high-rate indoor VLC systems. Multiple data streams can be transmitted simultaneously in the proposed scheme. Based on the transmit strategy, we develop a low-complexity receiver algorithm that achieves better bit-error rate performance than reference schemes, and the proposed OSM scheme has a much lower PAPR than OFDM based OSM schemes. When the spatial subchannels are highly correlated, a spatial area division strategy is applied, and the receiver algorithm is investigated. The symbol-error rate expression of the proposed OSM scheme is derived, and the computational complexity is analyzed

    Spatial and wavelength division multiplexing for high-speed VLC systems: An overview

    Get PDF
    White light emitting diodes (LEDs) are becoming the primary source of illumination for the home and office environment. These LEDs can be intensity modulated to transmit high-speed data via an optical carrier. As a result, there is a paradigm shift in indoor wireless communication as the illumination infrastructure can be reused for data communications. It is widely expected that visible light communication (VLC) system will play a significant role in realizing the high-speed data communication envisaged for 5G connectivity. The goal of VLC systems is to provide a reliable and ubiquitous communication link that is an order of magnitude faster than current radio frequency (RF) links. In order to support the high data rates required for the current and future generations of communication systems, a number of techniques were explored for VLC by a number of research groups worldwide. This paper provides an overview of spatial and wavelength division multiplexing that has enabled multi-Gb/s transmission speeds in VLC using low bandwidth LEDs

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Améliorations des transmissions VLC (Visible Light Communication) sous contrainte d'éclairage : études théoriques et expérimentations

    Get PDF
    Abstract : Indoor visible light communication (VLC) networks based on light-emitting diodes (LEDs) currently enjoy growing interest thanks in part to their robustness against interference, wide license-free available bandwidth, low cost, good energy efficiency and compatibility with existing lighting infrastructure. In this thesis, we investigate spectral-efficient modulation techniques for the physical layer of VLC to increase throughput while considering the quality of illumination as well as implementation costs. Numerical and experimental studies are performed employing pulse amplitude modulation (PAM) and carrierless amplitude and phase (CAP) modulation under illumination constraints and for high modulation orders. Furthermore, the impact of LED nonlinearity is investigated and a postdistortion technique is evaluated to compensate these nonlinear effects. Within this framework, transmission rates in the order of a few hundred Mb/s are achieved using a test bench made of low-cost components. In addition, an imaging multiple input multiple-output (MIMO) system is developed and the impact on performance of imaging lens misalignment is theoretically and numerically assessed. Finally, a polynomial matrix decomposition technique based on the classical LU factorization method is studied and applied for the first time to MIMO VLC systems in large space indoor environments.Les réseaux de communication en lumière visible (VLC) s’appuyant sur l’utilisation de diodes électroluminescentes (LED) bénéficient actuellement d’un intérêt grandissant, en partie grâce à leur robustesse face aux interférences électromagnétiques, leur large bande disponible non-régulée, leur faible coût, leur bonne efficacité énergétique, ainsi que leur compatibilité avec les infrastructures d’éclairage déjà existantes. Dans cette thèse, nous étudions des techniques de modulation à haute efficacité spectrale pour la couche physique des VLC pour augmenter les débits tout en considérant la qualité de l’éclairage ainsi que les coûts d’implémentation. Des études numériques et expérimentales sont réalisées sur la modulation d’impulsion d’amplitude (PAM) et sur la modulation d’amplitude et de phase sans porteuse (CAP) sous des contraintes d’éclairage et pour des grands ordres de modulation. De plus, l’impact des non-linéarités de la LED est étudié et une technique de post-distorsion est évaluée pour corriger ces effets non-linéaires. Dans ce cadre, des débits de plusieurs centaines de Mb/s sont atteints en utilisant un banc de test réalisé à partir de composants à bas coûts. Par ailleurs, un système multi-entrées multi-sorties (MIMO) imageant est également développé et l’impact du désaxage de l’imageur sur les performances est étudié. Finalement, une technique de décomposition polynomiale basée sur la méthode de factorisation classique LU est étudiée et appliquée aux systèmes MIMO VLC dans des grands espaces intérieurs

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Study of MIMO techniques for optical wireless communications

    Get PDF
    With its huge spectral resource, optical wireless communication (OWC) has emerged as a promising complementary technology to the radio frequency (RF) communication systems. OWC provides data communications for a variety of user applications and it can be deployed using simple, low-cost, low-power and energy-efficient component. In order to enhance capacity, reliability and/or coverage of OWC, multiple-input-multiple-output (MIMO) systems are employed to exploit additional degrees of freedom, such as the location and angular orientation of optical sources and detectors. However, the implementation of MIMO systems is faced with challenges such as the strong correlation and multipath propagation in indoor OWC channels, system synchronisation, as well as inter-channel interference (ICI) due to multiple parallel data transmission. This dissertation investigates MIMO OWC systems which utilises transmission techniques with reduced complexity. A detailed study and performance evaluation of the techniques in terms of capacity, spectral efficiency and error rates is conducted through theoretical analysis, simulation and experiments. The system performance is investigated under different constraints imposed by impairments such as interference, synchronization and channel correlation. Optical spatial modulation (OSM) is studied as a low complexity technique using multiple light sources to enhance system capacity. A generalised framework for implementing OSM with energy efficient pulse position modulation scheme is devised. This framework supports other variants of OSM, and it can be adapted to satisfy varying system requirement such as spectral and energy efficiencies. The performance of the OWC system is investigated in indoor line-of-sight (LOS) propagation. The error performance of the system is analysed theoretically and matched by simulation results. Also, the system performance is evaluated with experiments to demonstrate feasibility. Furthermore, the performance of OSM MIMO techniques in the realistic indoor scenario is considered by taking into account the multiple reflections of the transmitted signal from room surfaces. This is motivated by the recent drive towards high-speed Gigabits per second (Gbps) data communication, where the inter-symbol interference (ISI) caused by the multipath propagation may pose a major bottleneck. A model of the multipath-induced ISI is presented to account for signal spreading and then applied to formulate the error performance analysis. The impact of multipath-induced power penalty and delay spread on system performance is demonstrated using their spatial distributions across the coverage area. Additionally, the impact of timing synchronization problems on the error performance of different variants of the OSM MIMO techniques is investigated. While most works related to SM have assumed a perfect synchronization among the multiple transmitter and receiver elements, such assumption pose a challenge in practical deployment. Hence, the need to examine the impact of synchronisation error that can result from clock jitters and variations in propagation delay. Synchronisation error analyses of OSM schemes are presented, and the tolerance of each scheme to timing synchronization errors is demonstrated. To further enhance system capacity, this thesis also explores spatial multiplexing MIMO technique with orthogonal frequency division multiplexing (OFDM). The central objective is to propose and apply techniques to address the correlation of the indoor optical wireless channel and the frequency selectivity due to the limited bandwidth of LEDs. To address these two effects, a joint coding of paired information symbols was applied in a technique termed pairwise coding (PWC). This technique is based on rotated symbol constellation and it offers significant performance improvement. The error performance of the proposed system is evaluated through simulation and experimental demonstration. PWC proved to be effective over varying degrees of bandwidth limitation and under different channel conditions

    Etude et réalisation d'un système de communications par lumière visible (VLC/LiFi). Application au domaine automobile.

    Get PDF
    The scientific problematic of this PhD is centered on the usage of Visible LightCommunications (VLC) in automotive applications. By enabling wireless communication amongvehicles and also with the traffic infrastructure, the safety and efficiency of the transportation canbe substantially increased. Considering the numerous advantages of the VLC technologyencouraged the study of its appropriateness for the envisioned automotive applications, as analternative and/or a complement for the traditional radio frequency based communications.In order to conduct this research, a low-cost VLC system for automotive application wasdeveloped. The proposed system aims to ensure a highly robust communication between a LEDbasedVLC emitter and an on-vehicle VLC receiver. For the study of vehicle to vehicle (V2V)communication, the emitter was developed based on a vehicle backlight whereas for the study ofinfrastructure to vehicle (I2V) communication, the emitter was developed based on a traffic light.Considering the VLC receiver, a central problem in this area is the design of a suitable sensorable to enhance the conditioning of the signal and to avoid disturbances due to the environmentalconditions, issues that are addressed in the thesis. The performances of a cooperative drivingsystem integrating the two components were evaluated as well.The experimental validation of the VLC system was performed in various conditions andscenarios. The results confirmed the performances of the proposed system and demonstrated thatVLC can be a viable technology for the considered applications. Furthermore, the results areencouraging towards the continuations of the work in this domain.La problématique scientifique de cette thèse est centrée sur le développement decommunications par lumière visible (Visible Light Communications - VLC) dans lesapplications automobiles. En permettant la communication sans fil entre les véhicules, ou entreles véhicules et l’infrastructure routière, la sécurité et l'efficacité du transport peuvent êtreconsidérablement améliorées. Compte tenu des nombreux avantages de la technologie VLC,cette solution se présente comme une excellente alternative ou un complément pour lescommunications actuelles plutôt basées sur les technologies radio-fréquences traditionnelles.Pour réaliser ces travaux de recherche, un système VLC à faible coût pour applicationautomobile a été développé. Le système proposé vise à assurer une communication très robusteentre un émetteur VLC à base de LED et un récepteur VLC monté sur un véhicule. Pour l'étudedes communications véhicule à véhicule (V2V), l'émetteur a été développé sur la base d’un pharearrière rouge de voiture, tandis que pour l'étude des communications de l'infrastructure auvéhicule (I2V), l'émetteur a été développé sur la base d'un feu de circulation. Considérant lerécepteur VLC, le problème principal réside autour d’un capteur approprié, en mesured'améliorer le conditionnement du signal et de limiter les perturbations dues des conditionsenvironnementales. Ces différents points sont abordés dans la thèse, d’un point de vue simulationmais également réalisation du prototype.La validation expérimentale du système VLC a été réalisée dans différentes conditions etscénarii. Les résultats démontrent que la VLC peut être une technologie viable pour lesapplications envisagées

    Autonomous, Collaborative, Unmanned Aerial Vehicles for Search and Rescue

    Get PDF
    Search and Rescue is a vitally important subject, and one which can be improved through the use of modern technology. This work presents a number of advances aimed towards the creation of a swarm of autonomous, collaborative, unmanned aerial vehicles for land-based search and rescue. The main advances are the development of a diffusion based search strategy for route planning, research into GPS (including the Durham Tracker Project and statistical research into altitude errors), and the creation of a relative positioning system (including discussion of the errors caused by fast-moving units). Overviews are also given of the current state of research into both UAVs and Search and Rescue
    • …
    corecore