77,134 research outputs found

    Received signal strength indication for movement detection

    Get PDF
    © 2015 IPSJ. Wireless networks are spreading continuously, filling our homes and the world around us. By using a ZigBee network we will show that a person can be detected by analyzing the fluctuations of signal strength inside the network. The simplicity of our approach means that it could be extended to all wireless networks. This work shows both implications on privacy as well as promising advances in fields like home automation and smart devices by localizing people as they go about their daily lives

    Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks

    Full text link
    In this paper, we experimentally investigate the combined effect of human, antenna orientation in elevation direction and the ground effect on the Received Signal Strength Indicator (RSSI) parameter in the Wireless Sensor Network (WSN). In experiment, we use MICAz motes and consider different scenarios where antenna of the transmitter node is tilted in elevation direction. The motes were placed on the ground to take into account the ground effect on the RSSI. The effect of one, two and four persons on the RSSI is recorded. For one and two persons, different walking paces e.g. slow, medium and fast pace, are analysed. However, in case of four persons, random movement is carried out between the pair of motes. The experimental results show that some antenna orientation angles have drastic effect on the RSSI, even without any human activity. The fluctuation count and range of RSSI in different scenarios with same walking pace are completely different. Therefore, an efficient human activity algorithm is need that effectively takes into count the antenna elevation and other parameters to accurately detect the human activity in the WSN deployment region.Comment: 10th IEEE International Conference on Frontiers of Information Technology (FIT 12), 201

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode

    Focal axis resolver for offset reflector antennas

    Get PDF
    Method and apparatus for determining the focal axis of an asymmetrical antenna such as an offset paraboloid reflector whose physical rim is not coincident with the boundary of the electrical aperture but whose focal point is known is provided. A transmitting feed horn array consisting of at least two feed horn elements is positioned asymmetrically on either side of an estimated focal axis which is generally inclined with respect to the boresight axis of the antenna. The feed horn array is aligned with the estimated focal axis so that the phase centers (CP sub 1, CP sub 2) of the two feed horn elements are located on a common line running through the focal point (F) orthogonally with respect to the estimated focal axis

    The Architectural Dynamics of Encapsulated Botnet Detection (EDM)

    Full text link
    Botnet is one of the numerous attacks ravaging the networking environment. Its approach is said to be brutal and dangerous to network infrastructures as well as client systems. Since the introduction of botnet, different design methods have been employed to solve the divergent approach but the method of taking over servers and client systems is unabated. To solve this, we first identify Mpack, ICEpack and Fiesta as enhanced IRC tool. The analysis of its role in data exchange using OSI model was carried out. This further gave the needed proposal to the development of a High level architecture representing the structural mechanism and the defensive mechanism within network server so as to control the botnet trend. Finally, the architecture was designed to respond in a proactive state when scanning and synergizing the double data verification modules in an encapsulation manner within server system
    corecore