250 research outputs found

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Antenna subset selection for cyclic prefix assisted MIMO wireless communications over frequency selective channels

    Get PDF
    Antenna (subset) selection techniques are feasible to reduce the hardware complexity of multiple-input multiple-output (MIMO) systems, while keeping the benefits of higher-order MIMO systems. Many studies of antenna selection schemes are based on frequency-flat channel models, which are inconsistent to broadband MIMO systems employing spatial-multiplexing. In broadband MIMO systems aiming to provide high-data-rate links, the employed signal bandwidth is typically larger than the coherence bandwidth of the channel so that the channel will be of frequency selective nature. Within this contribution we provide an overview on joint transmitter- and receiver-side antenna subset selection methods for frequency selective channels and deploy them in MIMO orthogonal frequency division multiplexing (OFDM) systems and MIMO single-carrier (SC) systems employing frequency domain equalization (FDE).DFG/KA 1154/1

    Signal Processing in Arrayed MIMO Systems

    No full text
    Multiple-Input Multiple-Output (MIMO) systems, using antenna arrays at both receiver and transmitter, have shown great potential to provide high bandwidth utilization efficiency. Unlike other reported research on MIMO systems which often assumes independent antennas, in this thesis an arrayed MIMO system framework is proposed, which provides a richer description of the channel charac- teristics and additional degrees of freedom in designing communication systems. Firstly, the spatial correlated MIMO system is studied as an array-to-array system with each array (Tx or Rx) having predefined constrained aperture. The MIMO system is completely characterized by its transmit and receive array man- ifolds and a new spatial correlation model other than Kronecker-based model is proposed. As this model is based on array manifolds, it enables the study of the effect of array geometry on the capacity of correlated MIMO channels. Secondly, to generalize the proposed arrayed MIMO model to a frequency selective fading scenario, the framework of uplink MIMO DS-CDMA (Direct- Sequence Code Division Multiple Access) systems is developed. DOD estimation is developed based on transmit beamrotation. A subspace-based joint DOA/TOA estimation scheme as well as various spatial temporal reception algorithms is also proposed. Finally, the downlink MIMO-CDMA systems in multiple-access multipath fading channels are investigated. Linear precoder and decoder optimization problems are studied under different criterions. Optimization approaches with different power allocation schemes are investigated. Sub-optimization approaches with close-form solution and thus less computation complexity are also proposed

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Cooperative diversity for the cellular uplink: Sharing strategies, performance analysis, and receiver design

    Get PDF
    In this thesis, we propose data sharing schemes for the cooperative diversity in a cellular uplink to exploit diversity and enhance throughput performance of the system. Particularly, we consider new two and three-or-more user decode and forward (DF) protocols using space time block codes. We discuss two-user and three-user amplify and forward (AF) protocols and evaluate the performance of the above mentioned data sharing protocols in terms of the bit error rate and the throughput in an asynchronous code division multiple access (CDMA) cellular uplink. We develop a linear receiver for joint space-time decoding and multiuser detection that provides full diversity and near maximum-likelihood performance.;We also focus on a practical situation where inter-user channel is noisy and cooperating users can not successfully estimate other user\u27s data. We further design our system model such that, users decide not to forward anything in case of symbol errors. Channel estimation plays an important role here, since cooperating users make random estimation errors and the base station can not have the knowledge of the errors or the inter-user channels. We consider a training-based approach for channel estimation. We provide an information outage probability analysis for the proposed multi-user sharing schemes. (Abstract shortened by UMI.)

    Exploiting spatial modulation and analog network coding for the design of energy-efficient wireless networks

    Get PDF
    As the data rate demands of the cellular users increase, together with their number, it is expected that unprecedented capacity demands should be met in wireless networks in the forthcoming years. However, the energy consumption to meet these rates is expected to increase exponentially, according to trends. This can become a serious issue for both the environment, due to CO2 emissions, and the operators, which will have to pay more for electricity. Hence, several energy-efficient solutions have been proposed, such as multiple antenna systems, dynamic spectrum allocation, heterogeneous networks, and Network Coding, to name a few. Based on the above, the aim of this thesis to propose low-complexity and energy-efficient physical layer-based solutions compared to the already existing approaches, without sacrificing the quality of performance. More specifically, the focus is on the technologies of Spatial Modulation and Analog Network Coding. Both schemes offer the so-called multiplexing gain, which means that multiple streams can be transmitted without sacrificing resources, such as bandwidth. As far as Spatial Modulation is concerned, Spatial Modulation-based schemes are proposed that are more energy efficient than state-of-the-art technologies. Regarding Analog Network Coding, we study its implementation in relay-based scenarios and how it compares in terms of energy efficiency with conventional protocols, such as the time-division multiple access protocol. From the obtained results, the conclusion that can be drawn is that depending on the scenario both Spatial Modulation and Analog Network Coding can provide significant energy gains compared to existing technologies without sacrificing performance.A medida que las demandas de velocidad de datos de los usuarios de redes celulares aumentan, así como su número, se espera que las demandas de capacidad sin precedentes se deban cumplir en las redes inalámbricas en los próximos años. Sin embargo, se espera que aumente de forma exponencial el consumo de energía para satisfacer estas tasas, de acuerdo a las tendencias. Esto puede convertirse en un grave problema ambos para el medio ambiente, debido a las emisiones de CO2, y los operadores, que tendrán que pagar más por la electricidad. Por lo tanto, se han propuesto varias soluciones de eficiencia energética, tales como sistemas de múltiples antenas, la asignación de espectro dinámico, redes heterogéneas, y Network Coding, para nombrar unos pocos. Con base en lo anterior, el objetivo de esta tesis es proponer soluciones de baja complejidad y de eficiencia energética basadas en la capa física, en comparación con los enfoques ya existentes, sin sacrificar la calidad del funcionamiento. Más específicamente, la atención se centra en las tecnologías de Spatial Modulation y Analog Network Coding. Ambos esquemas ofrecen la llamada ganancia de multiplexación, lo que significa que múltiples flujos pueden ser transmitidos sin sacrificar recursos, tales como el ancho de banda. En lo que se refiere a Spatial Modulation, se proponen esquemas basados en Spatial Modulation que son más energéticamente que tecnologías ya existentes. En cuanto a Analog Network Coding, se estudia su aplicación en escenarios inalámbricos basados en relays y cómo se compara en términos de eficiencia energética con los protocolos convencionales, tales como el protocolo de acceso mútiple por división de tiempo. De los resultados obtenidos, la conclusión que se puede extraer es que dependiendo del escenario, ambos Spatial Modulation y Analog Network Coding pueden proporcionar beneficios significativos de energía en comparación con las tecnologías existentes sin sacrificar el funcionamiento

    Novel Efficient Precoding Techniques for Multiuser MIMO Systems

    Get PDF
    In Multiuser MIMO (MU-MIMO) systems, precoding is essential to eliminate or minimize the multiuser interference (MUI). However, the design of a suitable precoding algorithm with good overall performance and low computational complexity at the same time is quite challenging, especially with the increase of system dimensions. In this thesis, we explore the art of novel low-complexity high-performance precoding algorithms with both linear and non-linear processing strategies. Block diagonalization (BD)-type based precoding techniques are well-known linear precoding strategies for MU-MIMO systems. By employing BD-type precoding algorithms at the transmit side, the MU-MIMO broadcast channel is decomposed into multiple independent parallel SU-MIMO channels and achieves the maximum diversity order at high data rates. The main computational complexity of BD-type precoding algorithms comes from two singular value decomposition (SVD) operations, which depend on the number of users and the dimensions of each user's channel matrix. In this thesis, two categories of low-complexity precoding algorithms are proposed to reduce the computational complexity and improve the performance of BD-type precoding algorithms. One is based on multiple LQ decompositions and lattice reductions. The other one is based on a channel inversion technique, QR decompositions, and lattice reductions to decouple the MU-MIMO channel into equivalent SU-MIMO channels. Both of the two proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precoding algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity. Tomlinson-Harashima precoding (THP) is a prominent nonlinear processing technique employed at the transmit side and is a dual to the successive interference cancelation (SIC) detection at the receive side. Like SIC detection, the performance of THP strongly depends on the ordering of the precoded symbols. The optimal ordering algorithm, however, is impractical for MU-MIMO systems with multiple receive antennas. We propose a multi-branch THP (MB-THP) scheme and algorithms that employ multiple transmit processing and ordering strategies along with a selection scheme to mitigate interference in MU-MIMO systems. Two types of multi-branch THP (MB-THP) structures are proposed. The first one employs a decentralized strategy with diagonal weighted filters at the receivers of the users and the second uses a diagonal weighted filter at the transmitter. The MB-MMSE-THP algorithms are also derived based on an extended system model with the aid of an LQ decomposition, which is much simpler compared to the conventional MMSE-THP algorithms. Simulation results show that a better BER performance can be achieved by the proposed MB-MMSE-THP precoder with a small computational complexity increase
    corecore