6,340 research outputs found

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    What proof do we prefer? Variants of verifiability in voting

    Get PDF
    In this paper, we discuss one particular feature of Internet voting, verifiability, against the background of scientific literature and experiments in the Netherlands. In order to conceptually clarify what verifiability is about, we distinguish classical verifiability from constructive veriability in both individual and universal verification. In classical individual verifiability, a proof that a vote has been counted can be given without revealing the vote. In constructive individual verifiability, a proof is only accepted if the witness (i.e. the vote) can be reconstructed. Analogous concepts are de- fined for universal veriability of the tally. The RIES system used in the Netherlands establishes constructive individual verifiability and constructive universal verifiability, whereas many advanced cryptographic systems described in the scientific literature establish classical individual verifiability and classical universal verifiability. If systems with a particular kind of verifiability continue to be used successfully in practice, this may influence the way in which people are involved in elections, and their image of democracy. Thus, the choice for a particular kind of verifiability in an experiment may have political consequences. We recommend making a well-informed democratic choice for the way in which both individual and universal verifiability should be realised in Internet voting, in order to avoid these unconscious political side-effects of the technology used. The safest choice in this respect, which maintains most properties of current elections, is classical individual verifiability combined with constructive universal verifiability. We would like to encourage discussion about the feasibility of this direction in scientific research

    Secure and Verifiable Electronic Voting in Practice: the use of vVote in the Victorian State Election

    Full text link
    The November 2014 Australian State of Victoria election was the first statutory political election worldwide at State level which deployed an end-to-end verifiable electronic voting system in polling places. This was the first time blind voters have been able to cast a fully secret ballot in a verifiable way, and the first time a verifiable voting system has been used to collect remote votes in a political election. The code is open source, and the output from the election is verifiable. The system took 1121 votes from these particular groups, an increase on 2010 and with fewer polling places

    Implementation of a Secure Internet Voting Protocol

    Get PDF
    Voting is one of the most important activities in a democratic society. In a traditional voting environment voting process sometimes becomes quite inconvenient due to the reluctance of certain voters to visit a polling booth to cast votes besides involving huge social and human resources. The development of computer networks and elaboration of cryptographic techniques facilitate the implementation of electronic voting. In this work we propose a secure electronic voting protocol that is suitable for large scale voting over the Internet. The protocol allows a voter to cast his or her ballot anonymously, by exchanging untraceable yet authentic messages. The e-voting protocol is based on blind signatures and has the properties of anonymity, mobility, efficiency, robustness, authentication, uniqueness, and universal verifiability and coercion-resistant. The proposed protocol encompasses three distinct phases - that of registration phase, voting phase and counting phase involving five parties, the voter, certification centre, authentication server, voting server and a tallying server

    Analysis Of Electronic Voting Schemes In The Real World

    Get PDF
    Voting is at the heart of a country’s democracy. Assurance in the integrity of the electoral process is pivotal for voters to have any trust in the system. Often, electronic voting schemes proposed in the literature, or even implemented in real world elections do not always consider all issues that may exist in the environment in which they might be deployed. In this paper, we identify some real - world issues and threats to electronic voting schemes. We then use the threats we have identified to present an analysis of schemes recently used in Australia and Estonia and present recommendations to mitigate threats to such schemes when deployed in an untrustworthy environment
    corecore