2,234 research outputs found

    Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements

    Get PDF
    This paper is concerned with the receding horizon filtering problem for a class of discrete time-varying nonlinear systems with multiple missing measurements. The phenomenon of missing measurements occurs in a random way and the missing probability is governed by a set of stochastic variables obeying the given Bernoulli distribution. By exploiting the projection theory combined with stochastic analysis techniques, a Kalman-type receding horizon filter is put forward to facilitate the online applications. Furthermore, by utilizing the conditional expectation, a novel estimation scheme of state covariance matrices is proposed to guarantee the implementation of the filtering algorithm. Finally, a simulation example is provided to illustrate the effectiveness of the established filtering scheme.This work was supported in part by the Deanship of Scientific Research (DSR) at King Abdulaziz University in Saudi Arabia [grant number 16-135-35-HiCi], the National Natural Science Foundation of China [grant number 61329301], [grant number 61203139], [grant number 61134009], and [grant number 61104125], Royal Society of the U.K., the Shanghai Rising-Star Program of China [grant number 13QA1400100], the Shu Guang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation [grant number 13SG34], the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    Finite-time behavior of inner systems

    Get PDF
    In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner systems is studied and it is shown how the singular value structure of a suitably defined operator provides relevant insight about system invertibility and achievable tracking performance. The results are used to solve various tracking problems both on finite as well as on infinite time horizons. A typical receding horizon control scheme is considered and new conditions are derived to guarantee stabilizability of a receding horizon controller

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    On generalized terminal state constraints for model predictive control

    Full text link
    This manuscript contains technical results related to a particular approach for the design of Model Predictive Control (MPC) laws. The approach, named "generalized" terminal state constraint, induces the recursive feasibility of the underlying optimization problem and recursive satisfaction of state and input constraints, and it can be used for both tracking MPC (i.e. when the objective is to track a given steady state) and economic MPC (i.e. when the objective is to minimize a cost function which does not necessarily attains its minimum at a steady state). It is shown that the proposed technique provides, in general, a larger feasibility set with respect to existing approaches, given the same computational complexity. Moreover, a new receding horizon strategy is introduced, exploiting the generalized terminal state constraint. Under mild assumptions, the new strategy is guaranteed to converge in finite time, with arbitrarily good accuracy, to an MPC law with an optimally-chosen terminal state constraint, while still enjoying a larger feasibility set. The features of the new technique are illustrated by three examples.Comment: Part of the material in this manuscript is contained in a paper accepted for publication on Automatica and it is subject to Elsevier copyright. The copy of record is available on http://www.sciencedirect.com
    • …
    corecore