191 research outputs found

    Asymptotic Stability of POD based Model Predictive Control for a semilinear parabolic PDE

    Get PDF
    In this article a stabilizing feedback control is computed for a semilinear parabolic partial differential equation utilizing a nonlinear model predictive (NMPC) method. In each level of the NMPC algorithm the finite time horizon open loop problem is solved by a reduced-order strategy based on proper orthogonal decomposition (POD). A stability analysis is derived for the combined POD-NMPC algorithm so that the lengths of the finite time horizons are chosen in order to ensure the asymptotic stability of the computed feedback controls. The proposed method is successfully tested by numerical examples

    Approximation properties of receding horizon optimal control

    Get PDF

    State estimation for coupled reaction-diffusion PDE systems using modulating functions

    Get PDF
    Many systems with distributed dynamics are described by partial differential equations (PDEs). Coupled reaction-diffusion equations are a particular type of these systems. The measurement of the state over the entire spatial domain is usually required for their control. However, it is often impossible to obtain full state information with physical sensors only. For this problem, observers are developed to estimate the state based on boundary measurements. The method presented applies the so-called modulating function method, relying on an orthonormal function basis representation. Auxiliary systems are generated from the original system by applying modulating functions and formulating annihilation conditions. It is extended by a decoupling matrix step. The calculated kernels are utilized for modulating the input and output signals over a receding time window to obtain the coefficients for the basis expansion for the desired state estimation. The developed algorithm and its real-time functionality are verified via simulation of an example system related to the dynamics of chemical tubular reactors and compared to the conventional backstepping observer. The method achieves a successful state reconstruction of the system while mitigating white noise induced by the sensor. Ultimately, the modulating function approach represents a solution for the distributed state estimation problem without solving a PDE online
    • 

    corecore