605 research outputs found

    3D Real-Time Energy Efficient Path Planning for a Fleet of Fixed-Wing UAVs

    Get PDF
    UAV path planning requires finding an optimal (or sub-optimal) collision free path in a cluttered environment, while taking into account geometric, physical and temporal constraints, eventually allowing UAVs to perform their tasks despite several uncertainty sources. This paper reviews the current state-of-the-art in path planning, and subsequently introduces a novel node-based algorithm based on the called EEA*. EEA* is based on the A* Search algorithm and aims at mitigating some of its key limitations. The proposed EEA* deals with 3D environments, it provides robustness quickly converging to the solution, it is energy efficient and it is realtime implementable and executable. Along with the proposed EEA*, a local path planner is developed to cope with unknown dynamic threats in the environment. Applicability and effectiveness is first demonstrated via simulated experiments using a fixed-wing UAV that operates in different mountain-like 3D environments in the presence of several unknown dynamic obstacles. Then, the algorithm is applied in a multi-agent setting with three UAVs that are commanded to follow their respective paths in a safe way. The energy efficiency of the EEA* algorithm has also been tested and compared with the conventional A* algorithm

    Effective Target Aware Visual Navigation for UAVs

    Full text link
    In this paper we propose an effective vision-based navigation method that allows a multirotor vehicle to simultaneously reach a desired goal pose in the environment while constantly facing a target object or landmark. Standard techniques such as Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) in some cases (e.g., while the multirotor is performing fast maneuvers) do not allow to constantly maintain the line of sight with a target of interest. Instead, we compute the optimal trajectory by solving a non-linear optimization problem that minimizes the target re-projection error while meeting the UAV's dynamic constraints. The desired trajectory is then tracked by means of a real-time Non-linear Model Predictive Controller (NMPC): this implicitly allows the multirotor to satisfy both the required constraints. We successfully evaluate the proposed approach in many real and simulated experiments, making an exhaustive comparison with a standard approach.Comment: Conference paper at "European Conference on Mobile Robotics" (ECMR) 201

    A Distributed ADMM Approach to Non-Myopic Path Planning for Multi-Target Tracking

    Full text link
    This paper investigates non-myopic path planning of mobile sensors for multi-target tracking. Such problem has posed a high computational complexity issue and/or the necessity of high-level decision making. Existing works tackle these issues by heuristically assigning targets to each sensing agent and solving the split problem for each agent. However, such heuristic methods reduce the target estimation performance in the absence of considering the changes of target state estimation along time. In this work, we detour the task-assignment problem by reformulating the general non-myopic planning problem to a distributed optimization problem with respect to targets. By combining alternating direction method of multipliers (ADMM) and local trajectory optimization method, we solve the problem and induce consensus (i.e., high-level decisions) automatically among the targets. In addition, we propose a modified receding-horizon control (RHC) scheme and edge-cutting method for efficient real-time operation. The proposed algorithm is validated through simulations in various scenarios.Comment: Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Establishing and optimising unmanned airborne relay networks in urban environments

    Get PDF
    This thesis assesses the use of a group of small, low-altitude, low-power (in terms of communication equipment), xed-wing unmanned aerial vehicles (UAVs) as a mobile communication relay nodes to facilitate reliable communication between ground nodes in urban environments. This work focuses on enhancing existing models for optimal trajectory planning and enabling UAV relay implementation in realistic urban scenarios. The performance of the proposed UAV relay algorithms was demonstrated and proved through an indoor simulated urban environment, the rst experiment of its kind.The objective of enabling UAV relay deployment in realistic urban environments is addressed through relaxing the constraints on the assumptions of communication prediction models assumptions, reducing knowledge requirements and improving prediction efficiency. This thesis explores assumptions for urban environment knowledge at three different levels: (i) full knowledge about the urban environment, (ii) partially known urban environments, and (iii) no knowledge about the urban environment. The work starts with exploring models that assume the city size, layout and its effects on wireless communication strength are known, representing full knowledge about the urban environment. [Continues.]</div

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks
    • …
    corecore