199 research outputs found

    Multi-vehicle Dynamic Water Surface Monitoring

    Full text link
    Repeated exploration of a water surface to detect objects of interest and their subsequent monitoring is important in search-and-rescue or ocean clean-up operations. Since the location of any detected object is dynamic, we propose to address the combined surface exploration and monitoring of the detected objects by modeling spatio-temporal reward states and coordinating a team of vehicles to collect the rewards. The model characterizes the dynamics of the water surface and enables the planner to predict future system states. The state reward value relevant to the particular water surface cell increases over time and is nullified by being in a sensor range of a vehicle. Thus, the proposed multi-vehicle planning approach is to minimize the collective value of the dynamic model reward states. The purpose is to address vehicles' motion constraints by using model predictive control on receding horizon, thus fully exploiting the utilized vehicles' motion capabilities. Based on the evaluation results, the approach indicates improvement in a solution to the kinematic orienteering problem and the team orienteering problem in the monitoring task compared to the existing solutions. The proposed approach has been experimentally verified, supporting its feasibility in real-world monitoring tasks

    Model predictive cooperative localization control of multiple UAVs using potential function sensor constraints: a workflow to create sensor constraint based potential functions for the control of cooperative localization scenarios with mobile robots.

    Get PDF
    The global localization of multiple mobile robots can be achieved cost efficiently by localizing one robot globally and the others in relation to it using local sensor data. However, the drawback of this cooperative localization is the requirement of continuous sensor information. Due to a limited sensor perception space, the tracking task to continuously maintain this sensor information is challenging. To address this problem, this contribution is presenting a model predictive control (MPC) approach for such cooperative localization scenarios. In particular, the present work shows a novel workflow to describe sensor limitations with the help of potential functions. In addition, a compact motion model for multi-rotor drones is introduced to achieve MPC real-time capability. The effectiveness of the presented approach is demonstrated in a numerical simulation, an experimental indoor scenario with two quadrotors as well as multiple indoor scenarios of a quadrotor obstacle evasion maneuver

    Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace

    Get PDF
    The operation of Unmanned Aerial Vehicles (UAVs) in civil airspace is restricted by the aviation authorities, which require full compliance with regulations that apply for manned aircraft. This paper proposes control algorithms for a collision avoidance system that can be used as an advisory system or a guidance system for UAVs that are flying in civil airspace under visual flight rules. A decision-making system for collision avoidance is developed based on the rules of the air. The proposed architecture of the decision-making system is engineered to be implementable in both manned aircraft and UAVs to perform different tasks ranging from collision detection to a safe avoidance manoeuvre initiation. Avoidance manoeuvres that are compliant with the rules of the air are proposed based on pilot suggestions for a subset of possible collision scenarios. The proposed avoidance manoeuvres are parameterized using a geometric approach. An optimal collision avoidance algorithm is developed for real-time local trajectory planning. Essentially, a finite-horizon optimal control problem is periodically solved in real-time hence updating the aircraft trajectory to avoid obstacles and track a predefined trajectory. The optimal control problem is formulated in output space, and parameterized by using B-splines. Then the optimal designed outputs are mapped into control inputs of the system by using the inverse dynamics of a fixed wing aircraft

    Towards 6G IoT : tracing mobile sensor nodes with deep learning clustering in UAV networks

    Get PDF
    Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs
    • …
    corecore