5,871 research outputs found

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    Output feedback stable stochastic predictive control with hard control constraints

    Full text link
    We present a stochastic predictive controller for discrete time linear time invariant systems under incomplete state information. Our approach is based on a suitable choice of control policies, stability constraints, and employment of a Kalman filter to estimate the states of the system from incomplete and corrupt observations. We demonstrate that this approach yields a computationally tractable problem that should be solved online periodically, and that the resulting closed loop system is mean-square bounded for any positive bound on the control actions. Our results allow one to tackle the largest class of linear time invariant systems known to be amenable to stochastic stabilization under bounded control actions via output feedback stochastic predictive control

    Inferring Occluded Agent Behavior in Dynamic Games with Noise-Corrupted Observations

    Full text link
    Robots and autonomous vehicles must rely on sensor observations, e.g., from lidars and cameras, to comprehend their environment and provide safe, efficient services. In multi-agent scenarios, they must additionally account for other agents' intrinsic motivations, which ultimately determine the observed and future behaviors. Dynamic game theory provides a theoretical framework for modeling the behavior of agents with different objectives who interact with each other over time. Previous works employing dynamic game theory often overlook occluded agents, which can lead to risky navigation decisions. To tackle this issue, this paper presents an inverse dynamic game technique which optimizes the game model itself to infer unobserved, occluded agents' behavior that best explains the observations of visible agents. Our framework concurrently predicts agents' future behavior based on the reconstructed game model. Furthermore, we introduce and apply a novel receding horizon planning pipeline in several simulated scenarios. Results demonstrate that our approach offers 1) robust estimation of agents' objectives and 2) precise trajectory predictions for both visible and occluded agents from observations of only visible agents. Experimental findings also indicate that our planning pipeline leads to safer navigation decisions compared to existing baseline methods
    • …
    corecore