8,931 research outputs found

    Rebuilding for Array Codes in Distributed Storage Systems

    Get PDF
    In distributed storage systems that use coding, the issue of minimizing the communication required to rebuild a storage node after a failure arises. We consider the problem of repairing an erased node in a distributed storage system that uses an EVENODD code. EVENODD codes are maximum distance separable (MDS) array codes that are used to protect against erasures, and only require XOR operations for encoding and decoding. We show that when there are two redundancy nodes, to rebuild one erased systematic node, only 3/4 of the information needs to be transmitted. Interestingly, in many cases, the required disk I/O is also minimized

    Optimal Rebuilding of Multiple Erasures in MDS Codes

    Get PDF
    MDS array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with rr redundancy nodes can correct any rr node erasures by accessing all the remaining information in the surviving nodes. However, in practice, ee erasures is a more likely failure event, for 1e<r1\le e<r. Hence, a natural question is how much information do we need to access in order to rebuild ee storage nodes? We define the rebuilding ratio as the fraction of remaining information accessed during the rebuilding of ee erasures. In our previous work we constructed MDS codes, called zigzag codes, that achieve the optimal rebuilding ratio of 1/r1/r for the rebuilding of any systematic node when e=1e=1, however, all the information needs to be accessed for the rebuilding of the parity node erasure. The (normalized) repair bandwidth is defined as the fraction of information transmitted from the remaining nodes during the rebuilding process. For codes that are not necessarily MDS, Dimakis et al. proposed the regenerating codes framework where any rr erasures can be corrected by accessing some of the remaining information, and any e=1e=1 erasure can be rebuilt from some subsets of surviving nodes with optimal repair bandwidth. In this work, we study 3 questions on rebuilding of codes: (i) We show a fundamental trade-off between the storage size of the node and the repair bandwidth similar to the regenerating codes framework, and show that zigzag codes achieve the optimal rebuilding ratio of e/re/r for MDS codes, for any 1er1\le e\le r. (ii) We construct systematic codes that achieve optimal rebuilding ratio of 1/r1/r, for any systematic or parity node erasure. (iii) We present error correction algorithms for zigzag codes, and in particular demonstrate how these codes can be corrected beyond their minimum Hamming distances.Comment: There is an overlap of this work with our two previous submissions: Zigzag Codes: MDS Array Codes with Optimal Rebuilding; On Codes for Optimal Rebuilding Access. arXiv admin note: text overlap with arXiv:1112.037

    On Codes for Optimal Rebuilding Access

    Get PDF
    MDS (maximum distance separable) array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with r redundancy nodes can correct any r erasures by accessing (reading) all the remaining information in both the systematic nodes and the parity (redundancy) nodes. However, in practice, a single erasure is the most likely failure event; hence, a natural question is how much information do we need to access in order to rebuild a single storage node? We define the rebuilding ratio as the fraction of remaining information accessed during the rebuilding of a single erasure. In our previous work we showed that the optimal rebuilding ratio of 1/r is achievable (using our newly constructed array codes) for the rebuilding of any systematic node, however, all the information needs to be accessed for the rebuilding of the parity nodes. Namely, constructing array codes with a rebuilding ratio of 1/r was left as an open problem. In this paper, we solve this open problem and present array codes that achieve the lower bound of 1/r for rebuilding any single systematic or parity node

    MDS Array Codes with Optimal Rebuilding

    Get PDF
    MDS array codes are widely used in storage systems to protect data against erasures. We address the rebuilding ratio problem, namely, in the case of erasures, what is the the fraction of the remaining information that needs to be accessed in order to rebuild exactly the lost information? It is clear that when the number of erasures equals the maximum number of erasures that an MDS code can correct then the rebuilding ratio is 1 (access all the remaining information). However, the interesting (and more practical) case is when the number of erasures is smaller than the erasure correcting capability of the code. For example, consider an MDS code that can correct two erasures: What is the smallest amount of information that one needs to access in order to correct a single erasure? Previous work showed that the rebuilding ratio is bounded between 1/2 and 3/4 , however, the exact value was left as an open problem. In this paper, we solve this open problem and prove that for the case of a single erasure with a 2-erasure correcting code, the rebuilding ratio is 1/2 . In general, we construct a new family of r-erasure correcting MDS array codes that has optimal rebuilding ratio of 1/r in the case of a single erasure. Our array codes have efficient encoding and decoding algorithms (for the case r = 2 they use a finite field of size 3) and an optimal update property

    Zigzag Codes: MDS Array Codes with Optimal Rebuilding

    Get PDF
    MDS array codes are widely used in storage systems to protect data against erasures. We address the \emph{rebuilding ratio} problem, namely, in the case of erasures, what is the fraction of the remaining information that needs to be accessed in order to rebuild \emph{exactly} the lost information? It is clear that when the number of erasures equals the maximum number of erasures that an MDS code can correct then the rebuilding ratio is 1 (access all the remaining information). However, the interesting and more practical case is when the number of erasures is smaller than the erasure correcting capability of the code. For example, consider an MDS code that can correct two erasures: What is the smallest amount of information that one needs to access in order to correct a single erasure? Previous work showed that the rebuilding ratio is bounded between 1/2 and 3/4, however, the exact value was left as an open problem. In this paper, we solve this open problem and prove that for the case of a single erasure with a 2-erasure correcting code, the rebuilding ratio is 1/2. In general, we construct a new family of rr-erasure correcting MDS array codes that has optimal rebuilding ratio of er\frac{e}{r} in the case of ee erasures, 1er1 \le e \le r. Our array codes have efficient encoding and decoding algorithms (for the case r=2r=2 they use a finite field of size 3) and an optimal update property.Comment: 23 pages, 5 figures, submitted to IEEE transactions on information theor

    Long MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures given the number of redundancy or parity symbols. If an MDS code has r parities and no more than r erasures occur, then by transmitting all the remaining data in the code one can recover the original information. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we ask the following question: given the length of the column l, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r + 1)log_r l
    corecore