352 research outputs found

    Masking of Figure-Ground Texture and Single Targets by Surround Inhibition: A Computational Spiking Model

    Get PDF
    A visual stimulus can be made invisible, i.e. masked, by the presentation of a second stimulus. In the sensory cortex, neural responses to a masked stimulus are suppressed, yet how this suppression comes about is still debated. Inhibitory models explain masking by asserting that the mask exerts an inhibitory influence on the responses of a neuron evoked by the target. However, other models argue that the masking interferes with recurrent or reentrant processing. Using computer modeling, we show that surround inhibition evoked by ON and OFF responses to the mask suppresses the responses to a briefly presented stimulus in forward and backward masking paradigms. Our model results resemble several previously described psychophysical and neurophysiological findings in perceptual masking experiments and are in line with earlier theoretical descriptions of masking. We suggest that precise spatiotemporal influence of surround inhibition is relevant for visual detection

    Characterization Of Somatosensation In The Brainstem And The Development Of A Sensory Neuroprosthesis

    Get PDF
    Innovations in neuroprosthetics have restored sensorimotor function to paralysis patients and amputees. However, to date there is a lack of solutions available to adequately address the needs of spinal cord injury patients (SCI). In this dissertation we develop a novel sensor-brain interface (SBI) that delivers electric microstimulation to the cuneate nucleus (CN) to restore somatosensory feedback in patients with intact limbs. In Chapter II, we develop a fully passive liquid metal antenna using gallium-indium (GaIn) alloy injected in polydimethylsiloxane (PDM) channels to measure forces within the physiological sensitivity of a human fingertip. In Chapter III, we present the first chronic neural interface with the CN in primates to provide access to long-term unit recordings and stimulation. In Chapter IV, we demonstrate that microstimulation to the CN is detectable in a Three Alternative Force Choice Oddity task in awake behaving primates. In Chapter V, we explore the downstream effects of CN stimulation on primary somatosensory cortex, in the context of spontaneous and evoked spindles under sedation. In summary, these findings constitute a proof-of-concept for the sensory half of a bidirectional sensorimotor prosthesis in the CN

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Feedback Enhances Feedforward Figure-Ground Segmentation by Changing Firing Mode

    Get PDF
    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons

    The sodium-potassium pump controls the intrinsic firing of the cerebellar Purkinje neuron

    Get PDF
    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells

    Characterising information correlation in a stochastic Izhikevich neuron

    Get PDF
    The Izhikevich spiking neuron model is a relatively new mathematical framework which is able to represent many observed spiking neuron behaviors, excitatory or inhibitory, by simply adjusting a set of four model parameters. This model is deterministic in nature and has achieved wide applications in analytical and numerical analysis of biological neurons due largely to its biological plausibility and computational efficiency. In this work we present a stochastic version of the Izhikevich neuron, and measure its performance in transmitting information in a range of biological frequencies. The work reveals that the deterministic Izhikevich model has a wide information transmission range and is generally better in transmitting information than its stochastic counterpart

    Computational Study of the Mechanisms Underlying Oscillation in Neuronal Locomotor Circuits

    Get PDF
    In this thesis we model two very different movement-related neuronal circuits, both of which produce oscillatory patterns of activity. In one case we study oscillatory activity in the basal ganglia under both normal and Parkinsonian conditions. First, we used a detailed Hodgkin-Huxley type spiking model to investigate the activity patterns that arise when oscillatory cortical input is transmitted to the globus pallidus via the subthalamic nucleus. Our model reproduced a result from rodent studies which shows that two anti-phase oscillatory groups of pallidal neurons appear under Parkinsonian conditions. Secondly, we used a population model of the basal ganglia to study whether oscillations could be locally generated. The basal ganglia are thought to be organised into multiple parallel channels. In our model, isolated channels could not generate oscillations, but if the lateral inhibition between channels is sufficiently strong then the network can act as a rhythm-generating ``pacemaker'' circuit. This was particularly true when we used a set of connection strength parameters that represent the basal ganglia under Parkinsonian conditions. Since many things are not known about the anatomy and electrophysiology of the basal ganglia, we also studied oscillatory activity in another, much simpler, movement-related neuronal system: the spinal cord of the Xenopus tadpole. We built a computational model of the spinal cord containing approximately 1,500 biologically realistic Hodgkin-Huxley neurons, with synaptic connectivity derived from a computational model of axon growth. The model produced physiological swimming behaviour and was used to investigate which aspects of axon growth and neuron dynamics are behaviourally important. We found that the oscillatory attractor associated with swimming was remarkably stable, which suggests that, surprisingly, many features of axonal growth and synapse formation are not necessary for swimming to emerge. We also studied how the same spinal cord network can generate a different oscillatory pattern in which neurons on both sides of the body fire synchronously. Our results here suggest that under normal conditions the synchronous state is unstable or weakly stable, but that even small increases in spike transmission delays act to stabilise it. Finally, we found that although the basal ganglia and the tadpole spinal cord are very different systems, the underlying mechanism by which they can produce oscillations may be remarkably similar. Insights from the tadpole model allow us to predict how the basal ganglia model may be capable of producing multiple patterns of oscillatory activity

    Implications of Functional Anatomy on Information Processing in the Deep Cerebellar Nuclei

    Get PDF
    The cerebellum has been implicated as a major player in producing temporal acuity. Theories of cerebellar timing typically emphasize the role of the cerebellar cortex while overlooking the role of the deep cerebellar nuclei (DCN) that provide the sole output of the cerebellum. Here we review anatomical and electrophysiological studies to shed light on the DCN's ability to support temporal pattern generation in the cerebellum. Specifically, we examine data on the structure of the DCN, the biophysical properties of DCN neurons and properties of the afferent systems to evaluate their contribution to DCN firing patterns. In addition, we manipulate one of the afferent structures, the inferior olive (IO), using systemic harmaline injection to test for a network effect on activity of single DCN neurons in freely moving animals. Harmaline induces a rhythmic firing pattern of short bursts on a quiescent background at about 8 Hz. Other neurons become quiescent for long periods (seconds to minutes). The observed patterns indicate that the major effect harmaline exerts on the DCN is carried indirectly by the inhibitory Purkinje cells (PCs) activated by the IO, rather than by direct olivary excitation. Moreover, we suggest that the DCN response profile is determined primarily by the number of concurrently active PCs, their firing rate and the level of synchrony occurring in their transitions between continuous firing and quiescence. We argue that DCN neurons faithfully transfer temporal patterns resulting from strong correlations in PCs state transitions, while largely ignoring the timing of simple spikes from individual PCs. Future research should aim at quantifying the contribution of PC state transitions to DCN activity, and the interplay between the different afferent systems that drive DCN activity

    The analytic edge - image reconstruction from edge data via the Cauchy Integral

    Full text link
    A novel image reconstruction algorithm from edges (image gradients) follows from the Sokhostki-Plemelj Theorem of complex analysis, an elaboration of the standard Cauchy (Singular) Integral. This algorithm demonstrates the use of Singular Integral Equation methods to image processing, extending the more common use of Partial Differential Equations (e.g. based on variants of the Diffusion or Poisson equations). The Cauchy Integral approach has a deep connection to and sheds light on the (linear and non-linear) diffusion equation, the retinex algorithm and energy-based image regularization. It extends the commonly understood local definition of an edge to a global, complex analytic structure - the analytic edge - the contrast weighted kernel of the Cauchy Integral. Superposition of the set of analytic edges provides a "filled-in" image which is the piece-wise analytic image corresponding to the edge (gradient data) supplied. This is a fully parallel operation which avoids the time penalty associated with iterative solutions and thus is compatible with the short time (about 150 milliseconds) that is biologically available for the brain to construct a perceptual image from edge data. Although this algorithm produces an exact reconstruction of a filled-in image from the gradients of that image, slight modifications of it produce images which correspond to perceptual reports of human observers when presented with a wide range of "visual contrast illusion" images
    corecore