371 research outputs found

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    A Decidable Multi-agent Logic for Reasoning About Actions, Instruments, and Norms

    Get PDF
    We formally introduce a novel, yet ubiquitous, category of norms: norms of instrumentality. Norms of this category describe which actions are obligatory, or prohibited, as instruments for certain purposes. We propose the Logic of Agency and Norms (LAN) that enables reasoning about actions, instrumentality, and normative principles in a multi-agent setting. Leveraging LAN , we formalize norms of instrumentality and compare them to two prevalent norm categories: norms to be and norms to do. Last, we pose principles relating the three categories and evaluate their validity vis-à-vis notions of deliberative acting. On a technical note, the logic will be shown decidable via the finite model property

    A modal logic for reasoning on consistency and completeness of regulations

    Get PDF
    In this paper, we deal with regulations that may exist in multi-agent systems in order to regulate agent behaviour and we discuss two properties of regulations, that is consistency and completeness. After defining what consistency and completeness mean, we propose a way to consistently complete incomplete regulations. In this contribution, we extend previous works and we consider that regulations are expressed in a first order modal deontic logic

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Automated Reasoning over Deontic Action Logics with Finite Vocabularies

    Full text link
    In this paper we investigate further the tableaux system for a deontic action logic we presented in previous work. This tableaux system uses atoms (of a given boolean algebra of action terms) as labels of formulae, this allows us to embrace parallel execution of actions and action complement, two action operators that may present difficulties in their treatment. One of the restrictions of this logic is that it uses vocabularies with a finite number of actions. In this article we prove that this restriction does not affect the coherence of the deduction system; in other words, we prove that the system is complete with respect to language extension. We also study the computational complexity of this extended deductive framework and we prove that the complexity of this system is in PSPACE, which is an improvement with respect to related systems.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    A Logic for Reasoning about Group Norms

    Get PDF
    We present a number of modal logics to reason about group norms. As a preliminary step, we discuss the ontological status of the group to which the norms are applied, by adapting the classification made by Christian List of collective attitudes into aggregated, common, and corporate attitudes. Accordingly, we shall introduce modality to capture aggregated, common, and corporate group norms. We investigate then the principles for reasoning about those types of modalities. Finally, we discuss the relationship between group norms and types of collective responsibility

    Logics for modelling collective attitudes

    Get PDF
    We introduce a number of logics to reason about collective propositional attitudes that are defined by means of the majority rule. It is well known that majoritarian aggregation is subject to irrationality, as the results in social choice theory and judgment aggregation show. The proposed logics for modelling collective attitudes are based on a substructural propositional logic that allows for circumventing inconsistent outcomes. Individual and collective propositional attitudes, such as beliefs, desires, obligations, are then modelled by means of minimal modalities to ensure a number of basic principles. In this way, a viable consistent modelling of collective attitudes is obtained

    Named Models in Coalgebraic Hybrid Logic

    Full text link
    Hybrid logic extends modal logic with support for reasoning about individual states, designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specifically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended hybrid language with local binding on the other. We instantiate our framework with a number of examples. Notably, we prove completeness of graded hybrid logic with local binding

    Adaptive logic characterizations of input/output logic

    Get PDF
    We translate unconstrained and constrained input/output logics as introduced by Makinson and van der Torre to modal logics, using adaptive logics for the constrained case. The resulting reformulation has some additional benefits. First, we obtain a proof-theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that our framework naturally gives rise to useful variants and allows to express important notions that go beyond the expressive means of input/output logics, such as violations and sanctions
    corecore