1,841 research outputs found

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Towards improving web service repositories through semantic web techniques

    Get PDF
    The success of the Web services technology has brought topicsas software reuse and discovery once again on the agenda of software engineers. While there are several efforts towards automating Web service discovery and composition, many developers still search for services via online Web service repositories and then combine them manually. However, from our analysis of these repositories, it yields that, unlike traditional software libraries, they rely on little metadata to support service discovery. We believe that the major cause is the difficulty of automatically deriving metadata that would describe rapidly changing Web service collections. In this paper, we discuss the major shortcomings of state of the art Web service repositories and, as a solution, we report on ongoing work and ideas on how to use techniques developed in the context of the Semantic Web (ontology learning, mapping, metadata based presentation) to improve the current situation

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of our approach is validated through an extensive experimental evaluation

    Semantics and result disambiguation for keyword search on tree data

    Get PDF
    Keyword search is a popular technique for searching tree-structured data (e.g., XML, JSON) on the web because it frees the user from learning a complex query language and the structure of the data sources. However, the convenience of keyword search comes with drawbacks. The imprecision of the keyword queries usually results in a very large number of results of which only very few are relevant to the query. Multiple previous approaches have tried to address this problem. Some of them exploit structural and semantic properties of the tree data in order to filter out irrelevant results while others use a scoring function to rank the candidate results. These are not easy tasks though and in both cases, relevant results might be missed and the users might spend a significant amount of time searching for their intended result in a plethora of candidates. Another drawback of keyword search on tree data, also due to the incapacity of keyword queries to precisely express the user intent, is that the query answer may contain different types of meaningful results even though the user is interested in only some of them. Both problems of keyword search on tree data are addressed in this dissertation. First, an original approach for answering keyword queries is proposed. This approach extracts structural patterns of the query matches and reasons with them in order to return meaningful results ranked with respect to their relevance to the query. The proposed semantics performs comparisons between patterns of results by using different types of ho-momorphisms between the patterns. These comparisons are used to organize the patterns into a graph of patterns which is leveraged to determine ranking and filtering semantics. The experimental results show that the approach produces query results of higher quality compared to the previous ones. To address the second problem, an original approach for clustering the keyword search results on tree data is introduced. The clustered output allows the user to focus on a subset of the results, and to save time and effort while looking for the relevant results. The approach performs clustering at different levels of granularity to group similar results together effectively. The similarity of the results and result clusters is decided using relations on structural patterns of the results defined based on homomor-phisms between path patterns. An originality of the clustering approach is that the clusters are ranked at different levels of granularity to quickly guide the user to the relevant result patterns. An efficient stack-based algorithm is presented for generating result patterns and constructing the clustering hierarchy. The extensive experimentation with multiple real datasets show that the algorithm is fast and scalable. It also shows that the clustering methodology allows the users to effectively retrieve their intended results, and outperforms a recent state-of-the-art clustering approach. In order to tackle the second problem from a different aspect, diversifying the results of keyword search is addressed. Diversification aims to provide the users with a ranked list of results which balances the relevance and redundancy of the results. Measures for quantifying the relevance and dissimilarity of result patterns are presented and a heuristic for generating a diverse set of results using these metrics is introduced

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion
    corecore