50,852 research outputs found

    Architecture for spacecraft operations planning

    Get PDF
    A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Mechanisms in Dynamically Complex Systems

    Get PDF
    In recent debates mechanisms are often discussed in the context of ‘complex systems’ which are understood as having a complicated compositional structure. I want to draw the attention to another, radically different kind of complex system, in fact one that many scientists regard as the only genuine kind of complex system. Instead of being compositionally complex these systems rather exhibit highly non-trivial dynamical patterns on the basis of structurally simple arrangements of large numbers of non-linearly interacting constituents. The characteristic dynamical patterns in what I call “dynamically complex systems” arise from the interaction of the system’s parts largely irrespective of many properties of these parts. Dynamically complex systems can exhibit surprising statistical characteristics, the robustness of which calls for an explanation in terms of underlying generating mechanisms. However, I want to argue, dynamically complex systems are not sufficiently covered by the available conceptions of mechanisms. I will explore how the notion of a mechanism has to be modified to accommodate this case. Moreover, I will show under which conditions the widespread, if not inflationary talk about mechanisms in (dynamically) complex systems stretches the notion of mechanisms beyond its reasonable limits and is no longer legitimate

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    On Formal Methods for Collective Adaptive System Engineering. {Scalable Approximated, Spatial} Analysis Techniques. Extended Abstract

    Full text link
    In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have been built for supporting such techniques. The first technique is Scalable Approximated Population DTMC Model-checking. The second one is Spatial Model-checking for Closure Spaces. Both techniques have been developed in the context of the EU funded project QUANTICOL.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200
    • 

    corecore