194,201 research outputs found

    Reasoning about systems with evolving structure

    Get PDF
    This thesis is concerned with the specification and verification of mobile systems, i.e. systems with dynamically-evolving communication topologies. The expressiveness and applicability of the πυ-calculus, an extension of the π-calculus with first-order data, is investigated for describing and reasoning about mobile systems. The theory of confluence and determinacy in the πυ-calculus is studied, with emphasis on results and techniques which facilitate process verification. The utility of the calculus for giving descriptions which are precise, natural and amenable to rigorous analysis is illustrated in three applications. First, the behaviour of a distributed protocol is analysed. The use of a mobile calculus makes it possible to capture important intuitions concerning the behaviour of the algorithm; the theory of confluence plays a central role in its correctness proof. Secondly, an analysis of concurrent operations on a dynamic search structure, the B-tree, is carried out. This exploits results obtained concerning a notion of partial confluence by whose use classes of systems in which interaction between components is of a certain disciplined kind may be analysed. Finally, the πυ-calculus is used to give a semantic definition for a concurrent-object programming language and it is shown how this definition can be used as a basis for reasoning about systems prescribed by programs. Syntactic conditions on programs are isolated and shown to guarantee determinacy. Transformation rules which increase the scope for concurrent activity within programs without changing their observable behaviour are given and their soundness proved

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Research on knowledge representation, machine learning, and knowledge acquisition

    Get PDF
    Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments

    Ontology acquisition and exchange of evolutionary product-brokering agents

    Get PDF
    Agent-based electronic commerce (e-commerce) has been booming with the development of the Internet and agent technologies. However, little effort has been devoted to exploring the learning and evolving capabilities of software agents. This paper addresses issues of evolving software agents in e-commerce applications. An agent structure with evolution features is proposed with a focus on internal hierarchical knowledge. We argue that knowledge base of agents should be the cornerstone for their evolution capabilities, and agents can enhance their knowledge bases by exchanging knowledge with other agents. In this paper, product ontology is chosen as an instance of knowledge base. We propose a new approach to facilitate ontology exchange among e-commerce agents. The ontology exchange model and its formalities are elaborated. Product-brokering agents have been designed and implemented, which accomplish the ontology exchange process from request to integration

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    Asynchronous Multi-Context Systems

    Full text link
    In this work, we present asynchronous multi-context systems (aMCSs), which provide a framework for loosely coupling different knowledge representation formalisms that allows for online reasoning in a dynamic environment. Systems of this kind may interact with the outside world via input and output streams and may therefore react to a continuous flow of external information. In contrast to recent proposals, contexts in an aMCS communicate with each other in an asynchronous way which fits the needs of many application domains and is beneficial for scalability. The federal semantics of aMCSs renders our framework an integration approach rather than a knowledge representation formalism itself. We illustrate the introduced concepts by means of an example scenario dealing with rescue services. In addition, we compare aMCSs to reactive multi-context systems and describe how to simulate the latter with our novel approach.Comment: International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014). Proceedings of the International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), pages 31-37, technical report, ISSN 1430-3701, Leipzig University, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-15056
    corecore