661 research outputs found

    An integration framework for managing rich organisational process knowledge

    Get PDF
    The problem we have addressed in this dissertation is that of designing a pragmatic framework for integrating the synthesis and management of organisational process knowledge which is based on domain-independent AI planning and plan representations. Our solution has focused on a set of framework components which provide methods, tools and representations to accomplish this task.In the framework we address a lifecycle of this knowledge which begins with a methodological approach to acquiring information about the process domain. We show that this initial domain specification can be translated into a common constraint-based model of activity (based on the work of Tate, 1996c and 1996d) which can then be operationalised for use in an AI planner. This model of activity is ontologically underpinned and may be expressed with a flexible and extensible language based on a sorted first-order logic. The model combines perspectives covering both the space of behaviour as well as the space of decisions. Synthesised or modified processes/plans can be translated to and from the common representation in order to support knowledge sharing, visualisation and mixed-initiative interaction.This work united past and present Edinburgh research on planning and infused it with perspectives from design rationale, requirements engineering, and process knowledge sharing. The implementation has been applied to a portfolio of scenarios which include process examples from business, manufacturing, construction and military operations. An archive of this work is available at: http://www.aiai.ed.ac.uk/~oplan/cpf

    Semantic Web Services Provisioning

    Get PDF
    Semantic Web Services constitute an important research area, where vari ous underlying frameworks, such as WSMO and OWL-S, define Semantic Web ontologies to describe Web services, so they can be automatically discovered, composed, and invoked. Service discovery has been traditionally interpreted as a functional filter in current Semantic Web Services frameworks, frequently performed by Description Logics reasoners. However, semantic provisioning has to be performed taking Quality-of-Service (QOS) into account, defining user preferences that enable QOS-aware Semantic Web Service selection. Nowadays, the research focus is actually on QOS-aware processes, so cur rent proposals are developing the field by providing QOS support to semantic provisioning, especially in selection processes. These processes lead to opti mization problems, where the best service among a set of services has to be selected, so Description Logics cannot be used in this context. Furthermore, user preferences has to be semantically defined so they can be used within selection processes. There are several proposals that extend Semantic Web Services frameworks allowing QOS-aware semantic provisioning. However, proposed selection techniques are very coupled with their proposed extensions, most of them being implemented ad hoc. Thus, there is a semantic gap between functional descriptions (usually using WSMO or OWL-S) and user preferences, which are specific for each proposal, using different ontologies or even non-semantic de scriptions, and depending on its corresponding ad hoc selection technique. In this report, we give an overview of most important Semantic Web Ser vices frameworks, showing a comparison between them. Then, a thorough analysis of state-of-the art proposals on QOS-aware semantic provisioning and user preferences descriptions is presented, discussing about their applicabil ity, advantages, and defects. Results from this analysis motivate our research work, which has been already materialized in two early contributions.Los servicios web semánticos constituyen un importante campo de inves tigación, en el cual distintos frameworks, como por ejemplo WSMO y OWL-S, definen ontologías de la web semántica para describir servicios web, de for ma que estos puedan ser descubiertos, compuestos e invocados de manera automática. El descubrimiento de servicios ha sido interpretado tradicional mente como un filtro funcional en los frameworks actuales de servicios web semánticos, usando para ello razonadores de lógica descriptiva. Sin embargo, las tareas de aprovisionamiento semántico deberían tener en cuenta la calidad del servicio, definiendo para ello preferencias de usuario de manera que sea posible realizar una selección de servicios web semánticos sensible a la cali dad. Actualmente, el foco de la investigación está en procesos sensibles a la ca lidad, por lo que las propuestas actuales están trabajando en este campo intro duciendo el soporte adecuado a la calidad del servicio dentro del aprovisio namiento semántico, y principalmente en las tareas de selección. Estas tareas desembocan en problemas de optimización, donde el mejor servicio de entre un concjunto debe ser seleccionado, por lo que las lógicas descriptivas no pue den ser usadas en este contexto. Además, las preferencias de usuario deben ser definidas semánticamente, de forma que puedan ser usadas en las tareas de selección. Existen bastantes propuestas que extienden los frameworks de servicios web semánticos para habilitar el aprovisionamiento sensible a la calidad. Sin embargo, las técnicas de selección propuestas están altamente acopladas con dichas extensiones, donde la mayoría de ellas implementan algoritmos ad hoc. Por tanto, existe un salto semántico entre las descripciones funcionales (nor malmente usando WSMO o OWL-S) y las preferencias de usuario, las cuales son definidas específicamente por cada propuesta, usando ontologías distin tas o incluso descripciones no semánticas que dependen de la correspondiente técnica de selección ad hoc

    A formalism and method for representing and reasoning with process models authored by subject matter experts

    Get PDF
    Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively

    Contracts for Systems Design: Theory

    Get PDF
    Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems,and more, involve systems design as a critical step. Complexity has caused system design times and coststo go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods andstandard practices do not seem to scale with complexity so that novel design methods and tools based on astrong theoretical foundation are sorely needed. Model-based design as well as other methodologies suchas layered and compositional design have been used recently but a unified intellectual framework with acomplete design flow supported by formal tools is still lacking.Recently an “orthogonal” approach has been proposed that can be applied to all methodologies introducedthus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contractbaseddesign. Several results have been obtained in this domain but a unified treatment of the topic that canhelp in putting contract-based design in perspective is missing. This paper intends to provide such treatmentwhere contracts are precisely defined and characterized so that they can be used in design methodologiessuch as the ones mentioned above with no ambiguity. In addition, the paper provides an important linkbetween interface and contract theories to show similarities and correspondences.This paper is complemented by a companion paper where contract based design is illustrated throughuse cases

    Technological roadmap on AI planning and scheduling

    Get PDF
    At the beginning of the new century, Information Technologies had become basic and indispensable constituents of the production and preparation processes for all kinds of goods and services and with that are largely influencing both the working and private life of nearly every citizen. This development will continue and even further grow with the continually increasing use of the Internet in production, business, science, education, and everyday societal and private undertaking. Recent years have shown, however, that a dramatic enhancement of software capabilities is required, when aiming to continuously provide advanced and competitive products and services in all these fast developing sectors. It includes the development of intelligent systems – systems that are more autonomous, flexible, and robust than today’s conventional software. Intelligent Planning and Scheduling is a key enabling technology for intelligent systems. It has been developed and matured over the last three decades and has successfully been employed for a variety of applications in commerce, industry, education, medicine, public transport, defense, and government. This document reviews the state-of-the-art in key application and technical areas of Intelligent Planning and Scheduling. It identifies the most important research, development, and technology transfer efforts required in the coming 3 to 10 years and shows the way forward to meet these challenges in the short-, medium- and longer-term future. The roadmap has been developed under the regime of PLANET – the European Network of Excellence in AI Planning. This network, established by the European Commission in 1998, is the co-ordinating framework for research, development, and technology transfer in the field of Intelligent Planning and Scheduling in Europe. A large number of people have contributed to this document including the members of PLANET non- European international experts, and a number of independent expert peer reviewers. All of them are acknowledged in a separate section of this document. Intelligent Planning and Scheduling is a far-reaching technology. Accepting the challenges and progressing along the directions pointed out in this roadmap will enable a new generation of intelligent application systems in a wide variety of industrial, commercial, public, and private sectors

    A Knowledge Graph Based Integration Approach for Industry 4.0

    Get PDF
    The fourth industrial revolution, Industry 4.0 (I40) aims at creating smart factories employing among others Cyber-Physical Systems (CPS), Internet of Things (IoT) and Artificial Intelligence (AI). Realizing smart factories according to the I40 vision requires intelligent human-to-machine and machine-to-machine communication. To achieve this communication, CPS along with their data need to be described and interoperability conflicts arising from various representations need to be resolved. For establishing interoperability, industry communities have created standards and standardization frameworks. Standards describe main properties of entities, systems, and processes, as well as interactions among them. Standardization frameworks classify, align, and integrate industrial standards according to their purposes and features. Despite being published by official international organizations, different standards may contain divergent definitions for similar entities. Further, when utilizing the same standard for the design of a CPS, different views can generate interoperability conflicts. Albeit expressive, standardization frameworks may represent divergent categorizations of the same standard to some extent, interoperability conflicts need to be resolved to support effective and efficient communication in smart factories. To achieve interoperability, data need to be semantically integrated and existing conflicts conciliated. This problem has been extensively studied in the literature. Obtained results can be applied to general integration problems. However, current approaches fail to consider specific interoperability conflicts that occur between entities in I40 scenarios. In this thesis, we tackle the problem of semantic data integration in I40 scenarios. A knowledge graphbased approach allowing for the integration of entities in I40 while considering their semantics is presented. To achieve this integration, there are challenges to be addressed on different conceptual levels. Firstly, defining mappings between standards and standardization frameworks; secondly, representing knowledge of entities in I40 scenarios described by standards; thirdly, integrating perspectives of CPS design while solving semantic heterogeneity issues; and finally, determining real industry applications for the presented approach. We first devise a knowledge-driven approach allowing for the integration of standards and standardization frameworks into an Industry 4.0 knowledge graph (I40KG). The standards ontology is used for representing the main properties of standards and standardization frameworks, as well as relationships among them. The I40KG permits to integrate standards and standardization frameworks while solving specific semantic heterogeneity conflicts in the domain. Further, we semantically describe standards in knowledge graphs. To this end, standards of core importance for I40 scenarios are considered, i.e., the Reference Architectural Model for I40 (RAMI4.0), AutomationML, and the Supply Chain Operation Reference Model (SCOR). In addition, different perspectives of entities describing CPS are integrated into the knowledge graphs. To evaluate the proposed methods, we rely on empirical evaluations as well as on the development of concrete use cases. The attained results provide evidence that a knowledge graph approach enables the effective data integration of entities in I40 scenarios while solving semantic interoperability conflicts, thus empowering the communication in smart factories

    The SECURE collaboration model

    Get PDF
    The SECURE project has shown how trust can be made computationally tractable while retaining a reasonable connection with human and social notions of trust. SECURE has produced a well-founded theory of trust that has been tested and refined through use in real software such as collaborative spam filtering and electronic purse. The software comprises the SECURE kernel with extensions for policy specification by application developers. It has yet to be applied to large-scale, multi-domain distributed systems taking different application contexts into account. The project has not considered privacy in evidence distribution, a crucial issue for many application domains, including public services such as healthcare and police. The SECURE collaboration model has similarities with the trust domain concept, embodying the interaction set of a principal, but SECURE is primarily concerned with pseudonymous entities rather than domain-structured systems
    corecore