228,550 research outputs found

    Beyond Argument

    Get PDF
    Accounts of deep disagreements can generally be categorized as optimistic or pessimistic. Pessimistic interpretations insist that the depth of deep disagreements precludes the possibility of rational resolution altogether, while optimistic variations maintain the contrary. Despite both approaches’ respective positions, they nevertheless often, either explicitly or implicitly, agree on the underlying assumption that argumentation offers the only possible rational resolution to deep disagreements. This paper challenges that idea by, first, diagnosing this argument-only model of arriving at rational resolutions, second, articulating a competing but undertheorized Hegelian-informed approach, and third, attending briefly to some of the challenges of such an approach

    Modelling potential movement in constrained travel environments using rough space-time prisms

    Get PDF
    The widespread adoption of location-aware technologies (LATs) has afforded analysts new opportunities for efficiently collecting trajectory data of moving individuals. These technologies enable measuring trajectories as a finite sample set of time-stamped locations. The uncertainty related to both finite sampling and measurement errors makes it often difficult to reconstruct and represent a trajectory followed by an individual in space-time. Time geography offers an interesting framework to deal with the potential path of an individual in between two sample locations. Although this potential path may be easily delineated for travels along networks, this will be less straightforward for more nonnetwork-constrained environments. Current models, however, have mostly concentrated on network environments on the one hand and do not account for the spatiotemporal uncertainties of input data on the other hand. This article simultaneously addresses both issues by developing a novel methodology to capture potential movement between uncertain space-time points in obstacle-constrained travel environments

    REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture for robots that combines the complementary strengths of probabilistic graphical models and declarative programming to represent and reason with logic-based and probabilistic descriptions of uncertainty and domain knowledge. An action language is extended to support non-boolean fluents and non-deterministic causal laws. This action language is used to describe tightly-coupled transition diagrams at two levels of granularity, with a fine-resolution transition diagram defined as a refinement of a coarse-resolution transition diagram of the domain. The coarse-resolution system description, and a history that includes (prioritized) defaults, are translated into an Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a plan of abstract actions. To implement each such abstract action, the robot automatically zooms to the part of the fine-resolution transition diagram relevant to this action. A probabilistic representation of the uncertainty in sensing and actuation is then included in this zoomed fine-resolution system description, and used to construct a partially observable Markov decision process (POMDP). The policy obtained by solving the POMDP is invoked repeatedly to implement the abstract action as a sequence of concrete actions, with the corresponding observations being recorded in the coarse-resolution history and used for subsequent reasoning. The architecture is evaluated in simulation and on a mobile robot moving objects in an indoor domain, to show that it supports reasoning with violation of defaults, noisy observations and unreliable actions, in complex domains.Comment: 72 pages, 14 figure
    • …
    corecore