355,979 research outputs found

    Probabilities on Sentences in an Expressive Logic

    Get PDF
    Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability of being true, what probability should be ascribed to other (query) sentences? A natural wish-list, among others, is that the probability distribution (i) is consistent with the knowledge base, (ii) allows for a consistent inference procedure and in particular (iii) reduces to deductive logic in the limit of probabilities being 0 and 1, (iv) allows (Bayesian) inductive reasoning and (v) learning in the limit and in particular (vi) allows confirmation of universally quantified hypotheses/sentences. We translate this wish-list into technical requirements for a prior probability and show that probabilities satisfying all our criteria exist. We also give explicit constructions and several general characterizations of probabilities that satisfy some or all of the criteria and various (counter) examples. We also derive necessary and sufficient conditions for extending beliefs about finitely many sentences to suitable probabilities over all sentences, and in particular least dogmatic or least biased ones. We conclude with a brief outlook on how the developed theory might be used and approximated in autonomous reasoning agents. Our theory is a step towards a globally consistent and empirically satisfactory unification of probability and logic.Comment: 52 LaTeX pages, 64 definiton/theorems/etc, presented at conference Progic 2011 in New Yor

    A Puzzle about Knowing Conditionals

    Get PDF
    We present a puzzle about knowledge, probability and conditionals. We show that in certain cases some basic and plausible principles governing our reasoning come into conflict. In particular, we show that there is a simple argument that a person may be in a position to know a conditional the consequent of which has a low probability conditional on its antecedent, contra Adams’ Thesis. We suggest that the puzzle motivates a very strong restriction on the inference of a conditional from a disjunction

    Sleeping Beauty Reconsidered: Conditioning and Reflection in Asynchronous Systems

    Full text link
    A careful analysis of conditioning in the Sleeping Beauty problem is done, using the formal model for reasoning about knowledge and probability developed by Halpern and Tuttle. While the Sleeping Beauty problem has been viewed as revealing problems with conditioning in the presence of imperfect recall, the analysis done here reveals that the problems are not so much due to imperfect recall as to asynchrony. The implications of this analysis for van Fraassen's Reflection Principle and Savage's Sure-Thing Principle are considered.Comment: A preliminary version of this paper appears in Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004). This version will appear in Oxford Studies in Epistemolog

    Joint Probability Trees

    Full text link
    We introduce Joint Probability Trees (JPT), a novel approach that makes learning of and reasoning about joint probability distributions tractable for practical applications. JPTs support both symbolic and subsymbolic variables in a single hybrid model, and they do not rely on prior knowledge about variable dependencies or families of distributions. JPT representations build on tree structures that partition the problem space into relevant subregions that are elicited from the training data instead of postulating a rigid dependency model prior to learning. Learning and reasoning scale linearly in JPTs, and the tree structure allows white-box reasoning about any posterior probability P(Q∣E)P(Q|E), such that interpretable explanations can be provided for any inference result. Our experiments showcase the practical applicability of JPTs in high-dimensional heterogeneous probability spaces with millions of training samples, making it a promising alternative to classic probabilistic graphical models
    • …
    corecore