12,524 research outputs found

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Identifying Independence in Relational Models

    Full text link
    The rules of d-separation provide a framework for deriving conditional independence facts from model structure. However, this theory only applies to simple directed graphical models. We introduce relational d-separation, a theory for deriving conditional independence in relational models. We provide a sound, complete, and computationally efficient method for relational d-separation, and we present empirical results that demonstrate effectiveness.Comment: This paper has been revised and expanded. See "Reasoning about Independence in Probabilistic Models of Relational Data" http://arxiv.org/abs/1302.438

    Causal Discovery for Relational Domains: Representation, Reasoning, and Learning

    Get PDF
    Many domains are currently experiencing the growing trend to record and analyze massive, observational data sets with increasing complexity. A commonly made claim is that these data sets hold potential to transform their corresponding domains by providing previously unknown or unexpected explanations and enabling informed decision-making. However, only knowledge of the underlying causal generative process, as opposed to knowledge of associational patterns, can support such tasks. Most methods for traditional causal discovery—the development of algorithms that learn causal structure from observational data—are restricted to representations that require limiting assumptions on the form of the data. Causal discovery has almost exclusively been applied to directed graphical models of propositional data that assume a single type of entity with independence among instances. However, most real-world domains are characterized by systems that involve complex interactions among multiple types of entities. Many state-of-the-art methods in statistics and machine learning that address such complex systems focus on learning associational models, and they are oftentimes mistakenly interpreted as causal. The intersection between causal discovery and machine learning in complex systems is small. The primary objective of this thesis is to extend causal discovery to such complex systems. Specifically, I formalize a relational representation and model that can express the causal and probabilistic dependencies among the attributes of interacting, heterogeneous entities. I show that the traditional method for reasoning about statistical independence from model structure fails to accurately derive conditional independence facts from relational models. I introduce a new theory—relational d-separation—and a novel, lifted representation—the abstract ground graph—that supports a sound, complete, and computationally efficient method for algorithmically deriving conditional independencies from probabilistic models of relational data. The abstract ground graph representation also presents causal implications that enable the detection of causal direction for bivariate relational dependencies without parametric assumptions. I leverage these implications and the theoretical framework of relational d-separation to develop a sound and complete algorithm—the relational causal discovery (RCD) algorithm—that learns causal structure from relational data
    • …
    corecore