898 research outputs found

    Reasoning about Actions and State Changes by Injecting Commonsense Knowledge

    Full text link
    Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have shown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.Comment: Accepted at EMNLP 2018. Niket Tandon and Bhavana Dalvi Mishra contributed equally to this wor

    Machine Common Sense Concept Paper

    Full text link
    This paper summarizes some of the technical background, research ideas, and possible development strategies for achieving machine common sense. Machine common sense has long been a critical-but-missing component of Artificial Intelligence (AI). Recent advances in machine learning have resulted in new AI capabilities, but in all of these applications, machine reasoning is narrow and highly specialized. Developers must carefully train or program systems for every situation. General commonsense reasoning remains elusive. The absence of common sense prevents intelligent systems from understanding their world, behaving reasonably in unforeseen situations, communicating naturally with people, and learning from new experiences. Its absence is perhaps the most significant barrier between the narrowly focused AI applications we have today and the more general, human-like AI systems we would like to build in the future. Machine common sense remains a broad, potentially unbounded problem in AI. There are a wide range of strategies that could be employed to make progress on this difficult challenge. This paper discusses two diverse strategies for focusing development on two different machine commonsense services: (1) a service that learns from experience, like a child, to construct computational models that mimic the core domains of child cognition for objects (intuitive physics), agents (intentional actors), and places (spatial navigation); and (2) service that learns from reading the Web, like a research librarian, to construct a commonsense knowledge repository capable of answering natural language and image-based questions about commonsense phenomena

    Building Dynamic Knowledge Graphs from Text using Machine Reading Comprehension

    Full text link
    We propose a neural machine-reading model that constructs dynamic knowledge graphs from procedural text. It builds these graphs recurrently for each step of the described procedure, and uses them to track the evolving states of participant entities. We harness and extend a recently proposed machine reading comprehension (MRC) model to query for entity states, since these states are generally communicated in spans of text and MRC models perform well in extracting entity-centric spans. The explicit, structured, and evolving knowledge graph representations that our model constructs can be used in downstream question answering tasks to improve machine comprehension of text, as we demonstrate empirically. On two comprehension tasks from the recently proposed PROPARA dataset (Dalvi et al., 2018), our model achieves state-of-the-art results. We further show that our model is competitive on the RECIPES dataset (Kiddon et al., 2015), suggesting it may be generally applicable. We present some evidence that the model's knowledge graphs help it to impose commonsense constraints on its predictions.Comment: ICLR 2019 submissio

    Knowledge-Aware Procedural Text Understanding with Multi-Stage Training

    Full text link
    Procedural text describes dynamic state changes during a step-by-step natural process (e.g., photosynthesis). In this work, we focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process. Although recent approaches have achieved substantial progress, their results are far behind human performance. Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved, which require the incorporation of external knowledge bases. Previous works on external knowledge injection usually rely on noisy web mining tools and heuristic rules with limited applicable scenarios. In this paper, we propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge in this task. Specifically, we retrieve informative knowledge triples from ConceptNet and perform knowledge-aware reasoning while tracking the entities. Besides, we employ a multi-stage training schema which fine-tunes the BERT model over unlabeled data collected from Wikipedia before further fine-tuning it on the final model. Experimental results on two procedural text datasets, ProPara and Recipes, verify the effectiveness of the proposed methods, in which our model achieves state-of-the-art performance in comparison to various baselines.Comment: Published as full paper in Proceedings of the Web Conference 2021 (WWW'21

    Commonsense Properties from Query Logs and Question Answering Forums

    Full text link
    Commonsense knowledge about object properties, human behavior and general concepts is crucial for robust AI applications. However, automatic acquisition of this knowledge is challenging because of sparseness and bias in online sources. This paper presents Quasimodo, a methodology and tool suite for distilling commonsense properties from non-standard web sources. We devise novel ways of tapping into search-engine query logs and QA forums, and combining the resulting candidate assertions with statistical cues from encyclopedias, books and image tags in a corroboration step. Unlike prior work on commonsense knowledge bases, Quasimodo focuses on salient properties that are typically associated with certain objects or concepts. Extensive evaluations, including extrinsic use-case studies, show that Quasimodo provides better coverage than state-of-the-art baselines with comparable quality.Comment: Updated appendix reporting on Quasimodo v4.3 (2/2021

    Recent Advances in Natural Language Inference: A Survey of Benchmarks, Resources, and Approaches

    Full text link
    In the NLP community, recent years have seen a surge of research activities that address machines' ability to perform deep language understanding which goes beyond what is explicitly stated in text, rather relying on reasoning and knowledge of the world. Many benchmark tasks and datasets have been created to support the development and evaluation of such natural language inference ability. As these benchmarks become instrumental and a driving force for the NLP research community, this paper aims to provide an overview of recent benchmarks, relevant knowledge resources, and state-of-the-art learning and inference approaches in order to support a better understanding of this growing field

    Towards Generalizable Neuro-Symbolic Systems for Commonsense Question Answering

    Full text link
    Non-extractive commonsense QA remains a challenging AI task, as it requires systems to reason about, synthesize, and gather disparate pieces of information, in order to generate responses to queries. Recent approaches on such tasks show increased performance, only when models are either pre-trained with additional information or when domain-specific heuristics are used, without any special consideration regarding the knowledge resource type. In this paper, we perform a survey of recent commonsense QA methods and we provide a systematic analysis of popular knowledge resources and knowledge-integration methods, across benchmarks from multiple commonsense datasets. Our results and analysis show that attention-based injection seems to be a preferable choice for knowledge integration and that the degree of domain overlap, between knowledge bases and datasets, plays a crucial role in determining model success.Comment: EMNLP-COIN 201

    Temporal Common Sense Acquisition with Minimal Supervision

    Full text link
    Temporal common sense (e.g., duration and frequency of events) is crucial for understanding natural language. However, its acquisition is challenging, partly because such information is often not expressed explicitly in text, and human annotation on such concepts is costly. This work proposes a novel sequence modeling approach that exploits explicit and implicit mentions of temporal common sense, extracted from a large corpus, to build TACOLM, a temporal common sense language model. Our method is shown to give quality predictions of various dimensions of temporal common sense (on UDST and a newly collected dataset from RealNews). It also produces representations of events for relevant tasks such as duration comparison, parent-child relations, event coreference and temporal QA (on TimeBank, HiEVE and MCTACO) that are better than using the standard BERT. Thus, it will be an important component of temporal NLP.Comment: Accepted by ACL 202

    Towards an Atlas of Cultural Commonsense for Machine Reasoning

    Full text link
    Existing commonsense reasoning datasets for AI and NLP tasks fail to address an important aspect of human life: cultural differences. We introduce an approach that extends prior work on crowdsourcing commonsense knowledge by incorporating differences in knowledge that are attributable to cultural or national groups. We demonstrate the technique by collecting commonsense knowledge that surrounds six fairly universal rituals -- birth, coming-of-age, marriage, funerals, new year, and birthdays -- across two national groups: the United States and India. Our study expands the different types of relationships identified by existing work in the field of commonsense reasoning for commonplace events, and uses these new types to gather information that distinguish the identity of the groups providing the knowledge. It also moves us a step closer towards building a machine that doesn't assume a rigid framework of universal (and likely Western-biased) commonsense knowledge, but rather has the ability to reason in a contextually and culturally sensitive way. Our hope is that cultural knowledge of this sort will lead to more human-like performance in NLP tasks such as question answering (QA) and text understanding and generation.Comment: 9 pages, 9 figure

    Understanding in Artificial Intelligence

    Full text link
    Current Artificial Intelligence (AI) methods, most based on deep learning, have facilitated progress in several fields, including computer vision and natural language understanding. The progress of these AI methods is measured using benchmarks designed to solve challenging tasks, such as visual question answering. A question remains of how much understanding is leveraged by these methods and how appropriate are the current benchmarks to measure understanding capabilities. To answer these questions, we have analysed existing benchmarks and their understanding capabilities, defined by a set of understanding capabilities, and current research streams. We show how progress has been made in benchmark development to measure understanding capabilities of AI methods and we review as well how current methods develop understanding capabilities.Comment: 28 pages, 282 reference
    corecore