10 research outputs found

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed

    Comparison between low-cost passive and active vision for obstacle depth

    Get PDF
    Obstacle detection is a key issue in many current applications, especially in applications that have been increasingly highlighted such as: advanced driver assistance systems (ADAS), simultaneous localization and mapping (SLAM) and autonomous navigation system. This can be achieved by active and passive acquisition vision systems, for example: laser and cameras respectively. In this paper we present a comparison between low-cost active and passive devices, more specifically LIDAR and two cameras. To this comparison a disparity map is created by stereo correspondence through two images and a point cloud map created by LIDAR data values (distances measures). The obtained results shown that passive vision can be as good as or even better than active vision in low cost scenarios

    Comparison between low-cost passive and active vision for obstacle depth

    Get PDF
    Obstacle detection is a key issue in many current applications, especially in applications that have been increasingly highlighted such as: advanced driver assistance systems (ADAS), simultaneous localization and mapping (SLAM) and autonomous navigation system. This can be achieved by active and passive acquisition vision systems, for example: laser and cameras respectively. In this paper we present a comparison between low-cost active and passive devices, more specifically LIDAR and two cameras. To this comparison a disparity map is created by stereo correspondence through two images and a point cloud map created by LIDAR data values (distances measures). The obtained results shown that passive vision can be as good as or even better than active vision in low cost scenarios

    Comparison between low-cost passive and active vision for obstacle depth

    Get PDF
    Obstacle detection is a key issue in many current applications, especially in applications that have been increasingly highlighted such as: advanced driver assistance systems (ADAS), simultaneous localization and mapping (SLAM) and autonomous navigation system. This can be achieved by active and passive acquisition vision systems, for example: laser and cameras respectively. In this paper we present a comparison between low-cost active and passive devices, more specifically LIDAR and two cameras. To this comparison a disparity map is created by stereo correspondence through two images and a point cloud map created by LIDAR data values (distances measures). The obtained results shown that passive vision can be as good as or even better than active vision in low cost scenarios

    正距円筒画像への変換を用いた魚眼ステレオカメラの構築

    Get PDF

    視差オフセットマップによる魚眼ステレオカメラの高精度化

    Get PDF

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied
    corecore