474 research outputs found

    Distributed Online Machine Learning for Mobile Care Systems

    Get PDF
    Appendix D: Wavecomm Tech Docs removed for copyright reasonsTelecare and especially Mobile Care Systems are getting more and more popular. They have two major benefits: first, they drastically improve the living standards and even health outcomes for patients. In addition, they allow significant cost savings for adult care by reducing the needs for medical staff. A common drawback of current Mobile Care Systems is that they are rather stationary in most cases and firmly installed in patients’ houses or flats, which makes them stay very near to or even in their homes. There is also an upcoming second category of Mobile Care Systems which are portable without restricting the moving space of the patients, but with the major drawback that they have either very limited computational abilities and only a rather low classification quality or, which is most frequently, they only have a very short runtime on battery and therefore indirectly restrict the freedom of moving of the patients once again. These drawbacks are inherently caused by the restricted computational resources and mainly the limitations of battery based power supply of mobile computer systems. This research investigates the application of novel Artificial Intelligence (AI) and Machine Learning (ML) techniques to improve the operation of 2 Mobile Care Systems. As a result, based on the Evolving Connectionist Systems (ECoS) paradigm, an innovative approach for a highly efficient and self-optimising distributed online machine learning algorithm called MECoS - Moving ECoS - is presented. It balances the conflicting needs of providing a highly responsive complex and distributed online learning classification algorithm by requiring only limited resources in the form of computational power and energy. This approach overcomes the drawbacks of current mobile systems and combines them with the advantages of powerful stationary approaches. The research concludes that the practical application of the presented MECoS algorithm offers substantial improvements to the problems as highlighted within this thesis

    A Survey of Artificial Intelligence Techniques Employed for Adaptive Educational Systems within E-Learning Platforms

    Get PDF
    Abstract The adaptive educational systems within e-learning platforms are built in response to the fact that the learning process is different for each and every learner. In order to provide adaptive e-learning services and study materials that are tailor-made for adaptive learning, this type of educational approach seeks to combine the ability to comprehend and detect a person’s specific needs in the context of learning with the expertise required to use appropriate learning pedagogy and enhance the learning process. Thus, it is critical to create accurate student profiles and models based upon analysis of their affective states, knowledge level, and their individual personality traits and skills. The acquired data can then be efficiently used and exploited to develop an adaptive learning environment. Once acquired, these learner models can be used in two ways. The first is to inform the pedagogy proposed by the experts and designers of the adaptive educational system. The second is to give the system dynamic self-learning capabilities from the behaviors exhibited by the teachers and students to create the appropriate pedagogy and automatically adjust the e-learning environments to suit the pedagogies. In this respect, artificial intelligence techniques may be useful for several reasons, including their ability to develop and imitate human reasoning and decision-making processes (learning-teaching model) and minimize the sources of uncertainty to achieve an effective learning-teaching context. These learning capabilities ensure both learner and system improvement over the lifelong learning mechanism. In this paper, we present a survey of raised and related topics to the field of artificial intelligence techniques employed for adaptive educational systems within e-learning, their advantages and disadvantages, and a discussion of the importance of using those techniques to achieve more intelligent and adaptive e-learning environments.</jats:p

    Using primary afferent neural activity for predicting limb kinematics in cat

    Get PDF
    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, these methods did not make efficient use of the information embedded in the firing rates of the neural population. This dissertation proposes new methods for decoding limb kinematics from primary afferent firing rates. We present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of primary afferent neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. This thesis further explores the feasibility of decoding primary afferent firing rates in the presence of stimulation artifact generated during functional electrical stimulation. We show that kinematic information extracted from the firing rates of primary afferent neurons can be used in a 'real-time' application as a feedback for control of FES in a neuroprostheses. It provides methods for decoding primary afferent neurons and sets a foundation for further development of closed loop FES control of paralyzed extremities. Although a complete closed loop neuroprosthesis for natural behavior seems far away, the premise of this work argues that an interface at the dorsal root ganglia should be considered as a viable option

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    An overview of artificial intelligence applications for power electronics

    Get PDF

    Online Extraction and Single Trial Analysis of Regions Contributing to Erroneous Feedback Detection

    Get PDF
    International audienceUnderstanding how the brain processes errors is an essential and active field of neuroscience. Real time extraction and analysis of error signals provide an innovative method of assessing how individuals perceive ongoing interactions without recourse to overt behaviour. This area of research is critical in modern Brain–Computer Interface (BCI) design, but may also open fruitful perspectives in cognitive neuroscience research. In this context, we sought to determine whether we can extract discriminatory error-related activity in the source space, online, and on a trial by trial basis from electroencephalography data recorded during motor imagery. Using a data driven approach, based on interpretable inverse solution algorithms, we assessed the extent to which automatically extracted error-related activity was physiologically and functionally interpretable according to performance monitoring literature. The applicability of inverse solution based methods for automatically extracting error signals, in the presence of noise generated by motor imagery, was validated by simulation. Representative regions of interest, outlining the primary generators contributing to classification, were found to correspond closely to networks involved in error detection and performance monitoring. We observed discriminative activity in non-frontal areas, demonstrating that areas outside of the medial frontal cortex can contribute to the classification of error feedback activity

    Predicting Short-Term Traffic Congestion on Urban Motorway Networks

    Get PDF
    Traffic congestion is a widely occurring phenomenon caused by increased use of vehicles on roads resulting in slower speeds, longer delays, and increased vehicular queueing in traffic. Every year, over a thousand hours are spent in traffic congestion leading to great cost and time losses. In this thesis, we propose a multimodal data fusion framework for predicting traffic congestion on urban motorway networks. It comprises of three main approaches. The first approach predicts traffic congestion on urban motorway networks using data mining techniques. Two categories of models are considered namely neural networks, and random forest classifiers. The neural network models include the back propagation neural network and deep belief network. The second approach predicts traffic congestion using social media data. Twitter traffic delay tweets are analyzed using sentiment analysis and cluster classification for traffic flow prediction. Lastly, we propose a data fusion framework as the third approach. It comprises of two main techniques. The homogeneous data fusion technique fuses data of same types (quantitative or numeric) estimated using machine learning algorithms. The heterogeneous data fusion technique fuses the quantitative data obtained from the homogeneous data fusion model and the qualitative or categorical data (i.e. traffic tweet information) from twitter data source using Mamdani fuzzy rule inferencing systems. The proposed work has strong practical applicability and can be used by traffic planners and decision makers in traffic congestion monitoring, prediction and route generation under disruption
    corecore