448 research outputs found

    An immersive system for browsing and visualizing surveillance video

    Get PDF
    HouseFly is an interactive data browsing and visualization system that synthesizes audio-visual recordings from multiple sensors, as well as the meta-data derived from those recordings, into a unified viewing experience. The system is being applied to study human behavior in both domestic and retail situations grounded in longitudinal video recordings. HouseFly uses an immersive video technique to display multiple streams of high resolution video using a realtime warping procedure that projects the video onto a 3D model of the recorded space. The system interface provides the user with simultaneous control over both playback rate and vantage point, enabling the user to navigate the data spatially and temporally. Beyond applications in video browsing, this system serves as an intuitive platform for visualizing patterns over time in a variety of multi-modal data, including person tracks and speech transcripts.United States. Office of Naval Research (Award no. N000140910187

    Optimized Fundamental Signal Processing Operations for Energy Minimization on Heterogeneous Mobile Devices

    Get PDF
    [EN] Numerous signal processing applications are emerging on both mobile and high-performance computing systems. These applications are subject to responsiveness constraints for user interactivity and, at the same time, must be optimized for energy efficiency. The increasingly heterogeneous power-versus-performance profile of modern hardware introduces new opportunities for energy savings as well as challenges. In this line, recent systems-on-chip (SoC) composed of low-power multicore processors, combined with a small graphics accelerator (or GPU), yield a notable increment of the computational capacity while partially retaining the appealing low power consumption of embedded systems. This paper analyzes the potential of these new hardware systems to accelerate applications that involve a large number of floating-point arithmetic operations mainly in the form of convolutions. To assess the performance, a headphone-based spatial audio application for mobile devices based on a Samsung Exynos 5422 SoC has been developed. We discuss different implementations and analyze the tradeoffs between performance and energy efficiency for different scenarios and configurations. Our experimental results reveal that we can extend the battery lifetime of a device featuring such an architecture by a 238% by properly configuring and leveraging the computational resources.This work was supported by the Spanish Ministerio de Economia y Competitividad projects under Grant TIN2014-53495-R and Grant TEC2015-67387-C4-1-R, in part by the University Project UJI-B2016-20, in part by the Project PROMETEOII/2014/003. The work of J. A. Belloch was supported by the GVA Post-Doctoral Contract under Grant APOSTD/2016/069. This paper was recommended by Associate Editor Y. Ha.Belloch Rodríguez, JA.; Badia Contelles, JM.; Igual Peña, FD.; Gonzalez, A.; Quintana Ortí, ES. (2017). Optimized Fundamental Signal Processing Operations for Energy Minimization on Heterogeneous Mobile Devices. IEEE Transactions on Circuits and Systems I Regular Papers. 65(5):1614-1627. https://doi.org/10.1109/TCSI.2017.2761909S1614162765

    Optimisation énergétique de processus de traitement du signal et ses applications au décodage vidéo

    Get PDF
    Consumer electronics offer today more and more features (video, audio, GPS, Internet) and connectivity means (multi-radio systems with WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). The power demand of these devices is growing for the digital part especially for the processing chip. To support this ever increasing computing demand, processor architectures have evolved with multicore processors, graphics processors (GPU) and ether dedicated hardware accelerators. However, the evolution of battery technology is itself slower. Therefore, the autonomy of embedded systems is now under a great pressure. Among the new functionalities supported by mobile devices, video services take a prominent place. lndeed, recent analyzes show that they will represent 70% of mobile Internet traffic by 2016. Accompanying this growth, new technologies are emerging for new services and applications. Among them HEVC (High Efficiency Video Coding) can double the data compression while maintaining a subjective quality equivalent to its predecessor, the H.264 standard. ln a digital circuit, the total power consumption is made of static power and dynamic power. Most of modern hardware architectures implement means to control the power consumption of the system. Dynamic Voltage and Frequency Scaling (DVFS) mainly reduces the dynamic power of the circuit. This technique aims to adapt the power of the processor (and therefore its consumption) to the actual load needed by the application. To control the static power, Dynamic Power Management (DPM or sleep modes) aims to stop the voltage supplies associated with specific areas of the chip. ln this thesis, we first present a model of the energy consumed by the circuit integrating DPM and DVFS modes. This model is generalized to multi-core integrated circuits and to a rapid prototyping tool. Thus, the optimal operating point of a circuit, i.e. the operating frequency and the number of active cores, is identified. Secondly, the HEVC application is integrated to a multicore architecture coupled with a sophisticated DVFS mechanism. We show that this application can be implemented efficiently on general purpose processors (GPP) while minimizing the power consumption. Finally, and to get further energy gain, we propose a modified HEVC decoder that is capable to tune its energy gains together with a decoding quality trade-off.Aujourd'hui, les appareils électroniques offrent de plus en plus de fonctionnalités (vidéo, audio, GPS, internet) et des connectivités variées (multi-systèmes de radio avec WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). La demande en puissance de ces appareils est donc grandissante pour la partie numérique et notamment le processeur de calcul. Pour répondre à ce besoin sans cesse croissant de nouvelles fonctionnalités et donc de puissance de calcul, les architectures des processeurs ont beaucoup évolué : processeurs multi-coeurs, processeurs graphiques (GPU) et autres accélérateurs matériels dédiés. Cependant, alors que de nouvelles architectures matérielles peinent à répondre aux exigences de performance, l'évolution de la technologie des batteries est quant à elle encore plus lente. En conséquence, l'autonomie des systèmes embarqués est aujourd'hui sous pression. Parmi les nouveaux services supportés par les terminaux mobiles, la vidéo prend une place prépondérante. En effet, des analyses récentes de tendance montrent qu'elle représentera 70 % du trafic internet mobile dès 2016. Accompagnant cette croissance, de nouvelles technologies émergent permettant de nouveaux services et applications. Parmi elles, HEVC (High Efficiency Video Coding) permet de doubler la compression de données tout en garantissant une qualité subjective équivalente à son prédécesseur, la norme H.264. Dans un circuit numérique, la consommation provient de deux éléments: la puissance statique et la puissance dynamique. La plupart des architectures matérielles récentes mettent en oeuvre des procédés permettant de contrôler la puissance du système. Le changement dynamique du couple tension/fréquence appelé Dynamic Voltage and Frequency Scaling (DVFS) agit principalement sur la puissance dynamique du circuit. Cette technique permet d'adapter la puissance du processeur (et donc sa consommation) à la charge réelle nécessaire pour une application. Pour contrôler la puissance statique, le Dynamic Power Management (DPM, ou modes de veille) consistant à arrêter les alimentations associées à des zones spécifiques de la puce. Dans cette thèse, nous présentons d'abord une modélisation de l'énergie consommée par le circuit intégrant les modes DVFS et DPM. Cette modélisation est généralisée au circuit multi-coeurs et intégrée à un outil de prototypage rapide. Ainsi le point de fonctionnement optimal d'un circuit, la fréquence de fonctionnement et le nombre de coeurs actifs, est identifié. Dans un second temps, l'application HEVC est intégrée à une architecture multi-coeurs avec une adaptation dynamique de la fréquence de développement. Nous montrons que cette application peut être implémentée efficacement sur des processeurs généralistes (GPP) tout en minimisant la puissance consommée. Enfin, et pour aller plus loin dans les gains en énergie, nous proposons une modification du décodeur HEVC qui permet à un décodeur de baisser encore plus sa consommation en fonction du budget énergétique disponible localement

    Media gateway utilizando um GPU

    Get PDF
    Mestrado em Engenharia de Computadores e Telemátic

    Database of audio records

    Get PDF
    Diplomka a prakticky castDiplome with partical part

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Media Processing in Video Conferences for Cooperating Over the Top and Operator Based Networks

    Get PDF
    Telecom operators have dominated the communication industry for a long time by providing services with guaranteed quality of service. Such services are provided by the operator at the cost of maintaining a high grade network. With the introduction of broadband and internet, many over the top (OTT) services have emerged. These services use the underlying operator networks as a mere bit pipe while all service intelligence resides in the application running on the client device. Introduction of OTT services has seen a good response from general users who are no longer bound to services provided by the network operator. This in turn has caused operators and telecom companies to loose the ownership of their customers. This thesis takes media processing in video conferencing as a case study to compare the two competing domains of operator networks and OTT networks. Both domains offer video conferencing to end users, but they follow different architectures. The study shows that OTT services can perform much better if they utilize support of the underlying network. This will also bring the user base back to the network operator. The proposal is to turn the competition into cooperation between both parties. Assessments are done from both technical as well as business perspectives to assert that such cooperative agreements are possible and should be experimented in real life

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture
    • …
    corecore