20 research outputs found

    Overview of bladder heating technology: matching capabilities with clinical requirements.

    Get PDF
    Moderate temperature hyperthermia (40-45°C for 1 h) is emerging as an effective treatment to enhance best available chemotherapy strategies for bladder cancer. A rapidly increasing number of clinical trials have investigated the feasibility and efficacy of treating bladder cancer with combined intravesical chemotherapy and moderate temperature hyperthermia. To date, most studies have concerned treatment of non-muscle-invasive bladder cancer (NMIBC) limited to the interior wall of the bladder. Following the promising results of initial clinical trials, investigators are now considering protocols for treatment of muscle-invasive bladder cancer (MIBC). This paper provides a brief overview of the devices and techniques used for heating bladder cancer. Systems are described for thermal conduction heating of the bladder wall via circulation of hot fluid, intravesical microwave antenna heating, capacitively coupled radio-frequency current heating, and radiofrequency phased array deep regional heating of the pelvis. Relative heating characteristics of the available technologies are compared based on published feasibility studies, and the systems correlated with clinical requirements for effective treatment of MIBC and NMIBC

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens

    Full text link
    [EN] Ultrasound focusing is a hot topic due to its multiple applications in many fields, including biomedical imaging, thermal ablation of cancerous tissues, and non destructive testing in industrial environments. In such applications, the ability to control the focal distance of the ultrasound device in real-time is a key advantage over conventional devices with fixed focal parameters. Here, we present a method to achieve multiple time-modulated ultrasound foci using a single planar monofocal Fresnel Zone Plate. The method takes advantage of the focal distance linear dependence on the operating frequency of this kind of lenses to design a sequence of contiguous modulated rectangular pulses that achieve different focal distances and intensities as a function of time. Both numerical simulations and experimental results are presented, demonstrating the feasibility and potential of this technique.This work has been supported by Spanish MICINN project number RTI2018-100792-B-I00 and Generalitat Valenciana project AICO/2020/139. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant program PAID-01-18.PĂ©rez-LĂłpez, S.; Fuster Escuder, JM.; Candelas Valiente, P. (2021). Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens. Scientific Reports. 11(1):1-7. https://doi.org/10.1038/s41598-021-92849-xS17111Schmerr, L. W. Fundamentals of Ultrasonic Nondestructive Evaluation. Springer Series in Measurement Science and Technology (Springer International Publishing, 2016).Azhari, H. Basics of Biomedical Ultrasound for Engineers (Wiley, 2010).Fan, X. & Hynynen, K. Ultrasound surgery using multiple sonications—Treatment time considerations. Ultrasound Med. Biol. 22, 471–482. https://doi.org/10.1016/0301-5629(96)00026-9 (1996).ter Haar, G. & Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104. https://doi.org/10.1080/02656730601186138 (2007).Guo, S., Jing, Y. & Jiang, X. Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 1699–1707. https://doi.org/10.1109/TUFFC.2013.2751 (2013).Ebbini, E. & Cain, C. Multiple-focus ultrasound phased-array pattern synthesis: Optimal driving-signal distributions for hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 36, 540–548. https://doi.org/10.1109/58.31798 (1989).Casper, A., Liu, D. & Ebbini, E. S. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography. IEEE Trans. Biomed. Eng. 59, 95–105. https://doi.org/10.1109/TBME.2011.2162105 (2012).Ilovitsh, A., Ilovitsh, T., Foiret, J., Stephens, D. N. & Ferrara, K. W. Simultaneous axial multifocal imaging using a single acoustical transmission: A practical implementation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66, 273–284. https://doi.org/10.1109/TUFFC.2018.2885080 (2019).Lalonde, R., Worthington, A. & Hunt, J. Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 40, 592–602. https://doi.org/10.1109/58.238113 (1993).Lalonde, R. & Hunt, J. Variable frequency field conjugate lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 825–831. https://doi.org/10.1109/58.464838 (1995).Brown, M. D., Allen, T. J., Cox, B. T. & Treeby, B. E. Control of optically generated ultrasound fields using binary amplitude holograms. in IEEE International Ultrasonics Symposium, IUS, 1037–1040. https://doi.org/10.1109/ULTSYM.2014.0254 (IEEE, 2014).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522. https://doi.org/10.1038/nature19755 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Appl. Phys. Lett. 111, 244101. https://doi.org/10.1063/1.5004040 (2017).JimĂ©nez-GambĂ­n, S., JimĂ©nez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Phys. Rev. Appl. 12, 014016. https://doi.org/10.1103/PhysRevApplied.12.014016 (2019).Young, M. Zone plates and their aberrations. J. Opt. Soc. Am. 62, 972. https://doi.org/10.1364/JOSA.62.000972 (1972).Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S. & Viegas, J. Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Sci. Rep. 7, 4485. https://doi.org/10.1038/s41598-017-04490-2 (2017).Kim, H. et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express 25, 30290. https://doi.org/10.1364/OE.25.030290 (2017).Kirz, J. Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64, 301–309. https://doi.org/10.1364/JOSA.64.000301 (1974).Yashiro, W., Takeda, Y., Takeuchi, A., Suzuki, Y. & Momose, A. Hard-X-ray phase-difference microscopy using a fresnel zone plate and a transmission grating. Phys. Rev. Lett. 103, 180801. https://doi.org/10.1103/PhysRevLett.103.180801 (2009).Hristov, H. D. & Herben, M. H. Millimeter-wave fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech. 43, 2779–2785. https://doi.org/10.1109/22.475635 (1995).Hristov, H. D. & Rodriguez, J. M. Design equation for multidielectric fresnel zone plate lens. IEEE Microw. Wirel. Components Lett. 22, 574–576. https://doi.org/10.1109/LMWC.2012.2224099 (2012).Chao, G., Auld, B. A. & Winslow, D. K. Focusing and scanning of acoustic beams with fresnel zone plates. in 1972 Ultrasonics Symposium, 140–143. https://doi.org/10.1109/ultsym.1972.196048 (IEEE, 1972).Farnow, S. A. & Auld, B. A. Acoustic fresnel zone plate transducers. Appl. Phys. Lett. 25, 681–682. https://doi.org/10.1063/1.1655359 (1974).Farnow, S. A. & Auld, B. A. An acoustic phase plate imaging device. in Acoustical Holography, Vol. 6 (ed. Booth, N.) 259–273. https://doi.org/10.1007/978-1-4615-8216-8_14 (Springer US, 1975).Yamada, K. & Shimizu, H. Planar-structure focusing lens for acoustic microscope. in Ultrasonics Symposium Proceedings, 755–758. https://doi.org/10.1109/ultsym.1985.198612 (IEEE, 1985).Calvo, D. C., Thangawng, A. L., Nicholas, M. & Layman, C. N. Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107, 014103. https://doi.org/10.1063/1.4926607 (2015).JimĂ©nez, N., Romero-GarcĂ­a, V., GarcĂ­a-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101. https://doi.org/10.1063/1.5029424 (2018).Monsoriu, J. A. et al. Bifocal fibonacci diffractive lenses. IEEE Photon. J. 5, 3400106–3400106. https://doi.org/10.1109/JPHOT.2013.2248707 (2013).PĂ©rez-LĂłpez, S., Fuster, J. M. & Candelas, P. M-Bonacci zone plates for ultrasound focusing. Sensors 19, 4313. https://doi.org/10.3390/s19194313 (2019).Saavedra, G., Furlan, W. D. & Monsoriu, J. A. Fractal zone plates. Opt. Lett. 28, 971. https://doi.org/10.1364/ol.28.000971 (2003).PĂ©rez-LĂłpez, S., Fuster, J. M., Candelas, P. & Rubio, C. Fractal lenses based on Cantor binary sequences for ultrasound focusing applications. Ultrasonics 99, 105967. https://doi.org/10.1016/j.ultras.2019.105967 (2019).TarrazĂł-Serrano, D., PĂ©rez-LĂłpez, S., Candelas, P., Uris, A. & Rubio, C. Acoustic focusing enhancement in fresnel zone plate lenses. Sci. Rep. 9, 7067. https://doi.org/10.1038/s41598-019-43495-x (2019).Fuster, J. M., Candelas, P., Castiñeira-Ibåñez, S., PĂ©rez-LĂłpez, S. & Rubio, C. Analysis of fresnel zone plates focusing dependence on operating frequency. Sensors (Switzerland) 17, 2809. https://doi.org/10.3390/s17122809 (2017).Muelas-Hurtado, R. D., Ealo, J. L. & Volke-SepĂșlveda, K. Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices. Appl. Phys. Lett. 116, 114101. https://doi.org/10.1063/1.5137766 (2020).Xia, X. et al. Ultrasonic tunable focusing by a stretchable phase-reversal Fresnel zone plate. Appl. Phys. Lett. 117, 021904. https://doi.org/10.1063/5.0018663 (2020).PĂ©rez-LĂłpez, S., TarrazĂł-Serrano, D., Dolmatov, D. O., Rubio, C. & Candelas, P. Transient analysis of fresnel zone plates for ultrasound focusing applications. Sensors 20, 6824. https://doi.org/10.3390/s20236824 (2020).Liu, D.-L. & Waag, R. Propagation and backpropagation for ultrasonic wavefront design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1–13. https://doi.org/10.1109/58.585184 (1997)

    MR thermometry for hyperthermia in the head and neck

    Get PDF

    Differential ultra-wideband microwave imaging for medical applications

    Get PDF
    Elektromagnetische Ultrabreitband-Sensorik und -Bildgebung bieten vielversprechende Perspektiven fĂŒr verschiedene biomedizinische Anwendungen, da diese Wellen biologisches Gewebe durchdringen können. Dabei stellt der Einsatz von leistungsarmen und nichtionisierenden Mikrowellen eine gesundheitlich unbedenkliche Untersuchungsmethode dar. Eine der Herausforderungen im Bereich der ultrabreitbandigen Mikrowellensensorik ist dabei die Extraktion der diagnostisch relevanten Informationen aus den Messdaten, da aufgrund der komplexen Wellenausbreitung im Gewebe meist rechenaufwĂ€ndige Methoden notwendig sind. Dieses Problem wird wesentlich vereinfacht, wenn sich die Streueigenschaften des zu untersuchenden Objektes zeitlich Ă€ndern. Diese zeitliche Varianz der Streueigenschaften kann mit Hilfe einer Differenzmessung ĂŒber ein bestimmtes Zeitintervall ausgenutzt werden. Im Rahmen dieser Arbeit wird der differentielle Ansatz mittels Ultrabreitband-Sensorik fĂŒr zwei medizinische Anwendungsszenarien betrachtet. Die dabei genutzten Messsysteme basieren auf dem M-Sequenzverfahren, welches an der Technischen UniversitĂ€t Ilmenau entwickelt wurde. Die erste Anwendung bezieht sich auf das nicht-invasive Temperaturmonitoring mittels Ultrabreitband-Technologie wĂ€hrend einer Hyperthermiebehandlung. Hyperthermie ist eine WĂ€rmetherapie zur UnterstĂŒtzung onkologischer Behandlungen (z. B. Chemo- oder Strahlentherapie). WĂ€hrend einer solchen Behandlung wird das Tumorgewebe um 4 °C bis 8 °C erhöht. Dabei ist es wichtig, dass die Temperatur die obere Grenze von 45 °C nicht ĂŒberschreitet. In diesem Zusammenhang bietet das differentielle Ultrabreitband-Monitoring eine vielversprechende Technik zur kontinuierlichen und nicht-invasiven Messung der Temperatur im Körperinneren. Der Ansatz basiert auf den temperaturabhĂ€ngigen dielektrischen Eigenschaften von biologischem Gewebe. Dabei werden elektromagnetische Wellen mit einer geringen Leistung in das Untersuchungsmedium eingebracht, die sich gemĂ€ĂŸ den dielektrischen Eigenschaften von Gewebe ausbreiten. Wird eine Zielregion (bspw. Tumor) erwĂ€rmt, so Ă€ndern sich dessen dielektrische Eigenschaften, was zu einem sich Ă€ndernden Streuverhalten der elektromagnetischen Welle fĂŒhrt. Diese Änderungen können mittels Ultrabreitband-Sensorik erfasst werden. FĂŒr die Evaluierung der gemessenen Änderungen im Radarsignal ist es notwendig, die temperaturabhĂ€ngigen dielektrischen Eigenschaften von Gewebe im Mikrowellenfrequenzbereich zu kennen. Aufgrund der wenigen in der Literatur vorhandenen temperaturabhĂ€ngigen dielektrischen Eigenschaften von Gewebe ĂŒber einen breiten Mikrowellenfrequenzbereich werden in dieser Arbeit die dielektrischen Eigenschaften fĂŒr Leber, Muskel, Fett und Blut im Temperaturbereich zwischen 30 °C und 50 °C von 500 MHz bis 7 GHz erfasst. Hierzu wird zunĂ€chst ein Messaufbau fĂŒr die temperaturabhĂ€ngige dielektrische Spektroskopie von Gewebe, Gewebeersatz und FlĂŒssigkeiten vorgestellt und die wesentlichen Einflussfaktoren auf die Messungen analysiert. Die Messdaten werden mit Hilfe eines temperaturabhĂ€ngigen Cole-Cole Models modelliert, um die dielektrischen Eigenschaften fĂŒr beliebige Werte im untersuchten Temperatur- und Frequenzbereich berechnen zu können. In einem weiteren Experiment wird die nicht-invasive Erfassung von TemperaturĂ€nderungen mittels Ultrabreitband-Technologie in einem experimentellen Messaufbau nachgewiesen. Die Ergebnisse zeigen, dass eine TemperaturĂ€nderung von 1 °C zu Differenzsignalen fĂŒhrt, welche mit der genutzten Ultrabreitband-Sensorik (M-Sequenz) detektierbar sind. Die zweite Anwendung befasst sich mit der kontrastbasierten Mikrowellen-Brustkrebsbildgebung. Aufgrund des physiologisch gegebenen geringen dielektrischen Kontrastes zwischen DrĂŒsen- und Tumorgewebe kann durch den Einsatz von Kontrastmitteln, im Speziellen magnetischen Nanopartikeln, die ZuverlĂ€ssigkeit einer Diagnose verbessert werden. Der Ansatz beruht darauf, dass funktionalisierte magnetische Nanopartikel in der Lage sind, sich selektiv im Tumorgewebe zu akkumulieren, nachdem diese intravenös verabreicht wurden. Unter der Bedingung, dass sich eine ausreichende Menge der Nanopartikel im Tumor angesammelt hat, können diese durch ein Ă€ußeres polarisierendes Magnetfeld moduliert werden. Aufgrund der Modulation Ă€ndert sich das Streuverhalten der magnetischen Nanopartikel, was wiederum zu einem sich Ă€ndernden RĂŒckstreuverhalten fĂŒhrt. Diese Änderungen können mittels leistungsarmen elektromagnetischen Wellen detektiert werden. In dieser Arbeit wird die Detektierbarkeit und Bildgebung von magnetischen Nanopartikeln mittels Ultrabreitband-Sensorik im Mikrowellenfrequenzbereich in Hinblick auf die Brustkrebsdetektion betrachtet. Dabei werden zunĂ€chst verschiedene Einflussfaktoren, wie die AbhĂ€ngigkeit der Masse der magnetischen Nanopartikel, die MagnetfeldstĂ€rke des Ă€ußeren Magnetfeldes sowie die ViskositĂ€t des Umgebungsmediums, in das die Nanopartikel eingebettet sind, auf die Detektierbarkeit der magnetischen Nanopartikel untersucht. Die Ergebnisse zeigen eine lineare AbhĂ€ngigkeit zwischen dem gemessenen Radarsignal und der Masse der magnetischen Nanopartikel sowie einen nichtlinearen Zusammenhang zwischen der Antwort der magnetischen Nanopartikel und der FeldstĂ€rke des Ă€ußeren Magnetfeldes. DarĂŒber hinaus konnten die magnetischen Nanopartikel fĂŒr alle untersuchten ViskositĂ€ten erfolgreich detektiert werden. Basierend auf diesen Voruntersuchungen wird ein realistischer Messaufbau fĂŒr die kontrastbasierte Brustkrebsbildgebung vorgestellt. Die Evaluierung des Messaufbaus erfolgt mittels Phantommessungen, wobei die verwendeten Phantommaterialien die dielektrischen Eigenschaften von biologischem Gewebe imitieren, um eine möglichst hohe Aussagekraft der Ergebnisse hinsichtlich eines praktischen Messszenarios zu erhalten. Dabei wird die Detektierbarkeit und Bildgebung der magnetischen Nanopartikel in AbhĂ€ngigkeit der Tumortiefe analysiert. Die Ergebnisse zeigen, dass die magnetischen Nanopartikel erfolgreich detektiert werden können. Dabei hĂ€ngt im dreidimensionalen Bild die IntensitĂ€t des Messsignals, hervorgerufen durch die magnetischen Nanopartikel, von deren Position ab. Die Ursachen hierfĂŒr sind die pfadabhĂ€ngige DĂ€mpfung der elektromagnetischen Wellen, die inhomogene Ausleuchtung des Mediums mittels Mikrowellen, da eine gleichmĂ€ĂŸige Anordnung der Antennen aufgrund der Magnetpole des Elektromagneten nicht möglich ist, sowie das inhomogene polarisierende Magnetfeld innerhalb des Untersuchungsmediums. In Bezug auf den letzten Aspekt wird das Magnetfeld im Untersuchungsbereich ausgemessen und ein Ansatz prĂ€sentiert, mit dem die InhomogenitĂ€t des Magnetfeldes kompensiert werden kann. Weiterhin wurden die StöreinflĂŒsse des polarisierenden Magnetfeldes auf das Messsystem untersucht. In diesem Zusammenhang werden zwei verschiedene Modulationsarten (eine Modulation mit den zwei ZustĂ€nden AN/AUS und eine periodische Modulation) des Ă€ußeren polarisierenden Magnetfeldes analysiert. Es wird gezeigt, dass mit beiden Modulationen die magnetischen Nanopartikel bildgebend dargestellt werden können. Abschließend werden die Ergebnisse in Hinblick auf die StöreinflĂŒsse sowie ein praktisches Anwendungsszenario diskutiert.Electromagnetic ultra-wideband sensing and imaging provide promising perspectives in various biomedical applications as these waves can penetrate biological tissue. The use of low-power and nonionizing electromagnetic waves in the microwave frequency range offers an examination method that is harmless to health. One of the challenges in the field of ultra-wideband microwave sensor technology is the extraction of diagnostically relevant information from the measurement data, since the complex wave propagation in tissue usually requires computationally intensive methods. This problem is simplified when the scattering properties of the object under observation change with time. Such a time variance of the scattering properties can be exploited by means of a differential measurement over a certain time interval. In this work, a differential approach using ultra-wideband sensing is considered for two medical applications. The measurement systems used in this work are based on the M-sequence technology developed at the Technische UniversitĂ€t Ilmenau. The first application relates to noninvasive temperature monitoring using ultra-wideband technology during hyperthermia treatment. Hyperthermia is a thermal therapy to support oncological treatments (e.g. chemotherapy or radiotherapy). During such a treatment, the tumor tissue is heated by 4 °C to 8 °C, whereby it is important that the temperature does not exceed the upper limit of 45 °C. In this context, differential ultra-wideband monitoring offers a promising technique for continuous and noninvasive temperature monitoring inside the body. The approach is based on the temperature-dependent dielectric properties of biological tissue. In this method, low power electromagnetic waves are emitted into the medium under investigation. These waves propagate according to the dielectric properties of tissue. If a target region (e.g. tumor) is heated, its dielectric properties will change, which leads to a changing scattering behavior of the electromagnetic wave. These changes can be detected in the measured reflection signals using ultra-wideband microwave technology. To evaluate the measured changes in the radar signal, it is necessary to know the temperature-dependent dielectric properties of tissue in the microwave frequency range. Due to the lack of knowledge of temperature-dependent dielectric properties of tissues over a wide microwave frequency range, the dielectric properties for liver, muscle, fat and blood in the temperature range between 30 °C and 50 °C from 500 MHz to 7 GHz are acquired in this work. For this purpose, a measurement setup for the temperature-dependent dielectric spectroscopy of tissue, tissue substitutes and fluids is presented. Furthermore, the main influences on measuring the temperature-dependent dielectric properties are analyzed. The measured data are modeled using a temperature-dependent Cole-Cole model in order to calculate the dielectric properties for arbitrary values in the investigated temperature and frequency range. In a further experiment, the noninvasive detection of temperature changes using ultra-wideband microwave technology is demonstrated in an experimental measurement setup. The results show that a temperature change of 1 °C results in differential signals that are detectable by means of ultra-wideband pseudo-noise sensing (M-sequence). The second application is dealing with contrast enhanced microwave breast cancer imaging. Due to the physiologically given low dielectric contrast between glandular and tumor tissue, the use of contrast agents, specifically magnetic nanoparticles, can improve the diagnostic reliability. The approach is based on the assumption that functionalized magnetic nanoparticles are able to selectively accumulate in tumor tissue after intravenous administration. Provided that a sufficient amount of nanoparticles has accumulated in the tumor, they can be modulated by an external polarizing magnetic field. Due to the modulation, the scattering behavior of the magnetic nanoparticles changes, which results a changing backscattering behavior. This change can be detected using low-power electromagnetic waves. In this work, the detectability and imaging of magnetic nanoparticles by means of ultra-wideband pseudo-noise sensing in the microwave frequency range is considered with respect to breast cancer detection. First, various influencing factors on the detectability of the magnetic nanoparticles are investigated, such as the mass of the magnetic nanoparticles, the magnetic field strength of the external polarizing magnetic field and the viscosity of the surrounding medium in which the nanoparticles are embedded. The results reveal a linear dependence between the measured radar signal and the mass of the magnetic nanoparticles as well as a nonlinear relationship between the response signal of the magnetic nanoparticles and the magnetic field intensity of the external magnetic field. Furthermore, the magnetic nanoparticles can be successfully detected in all investigated viscosities of the surrounding medium. Based on these preliminary investigations, a realistic measurement setup for contrast enhanced microwave breast cancer imaging is presented. The evaluation of the measurement setup is performed by phantom measurements, where the used phantom materials mimic the dielectric properties of biological tissue to obtain significance of the results with respect to a practical measurement scenario. In this context, the detectability and imaging of the magnetic nanoparticles are analyzed depending on the tumor position and penetration depth, respectively. The results show that the magnetic nanoparticles can be successfully detected. However, the magnetic poles of the electromagnet limit the space for the transmitting and receiving antennas, resulting in an inhomogeneous microwave illumination of the medium under test, which leads to a location-dependent magnetic nanoparticle response. Furthermore, the intensity of the response signal caused by the magnetic nanoparticles in the three-dimensional image depends on their position due to the path-dependent attenuation and the inhomogeneous magnetic field within the investigated medium. Regarding the last point, the external polarizing magnetic field is measured in the investigation area and an approach to compensate for the inhomogeneity of the magnetic field is presented. In addition, the disturbing influences of the polarizing magnetic field on the measurement setup are analyzed. In this context, two different modulation types (a two-state and a periodic modulation) of the external polarizing magnetic field are investigated. It is shown that both modulations can be used to image the magnetic nanoparticles. Finally, the results are discussed with respect to the spurious effects as well as a practical application scenario

    Modeling and MR-thermometry for adaptive hyperthermia in cervical Cancer

    Get PDF

    Thérapies ultrasonores cardiaques guidées par élastographie et échographie ultrarapides

    Get PDF
    Atrial fibrillation (AF) affects 2-3% of the European and North-American population, whereas ventricular tachyarrhythmia (VT) is related to an important risk of sudden death. AF and VT originate from dysfunctional electrical activity in cardiac tissues. Minimally-invasive approaches such as Radio-Frequency Catheter Ablation (RFCA) have revolutionized the treatment of these diseases; however the success rate of RFCA is currently limited by the lack of monitoring techniques to precisely control the extent of thermally ablated tissue.The aim of this thesis is to propose novel ultrasound-based approaches for minimally invasive cardiac ablation under guidance of ultrasound imaging. For this, first, we validated the accuracy and clinical viability of Shear-Wave Elastography (SWE) as a real-time quantitative imaging modality for thermal ablation monitoring in vivo. Second we implemented SWE on an intracardiac transducer and validated the feasibility of evaluating thermal ablation in vitro and in vivo on beating hearts of a large animal model. Third, a dual-mode intracardiac transducer was developed to perform both ultrasound therapy and imaging with the same elements, on the same device. SWE-controlled High-Intensity-Focused-Ultrasound thermal lesions were successfully performed in vivo in the atria and the ventricles of a large animal model. At last, SWE was implemented on a transesophageal ultrasound imaging and therapy device and the feasibility of transesophageal approach was demonstrated in vitro and in vivo. These novel approaches may lead to new clinical devices for a safer and controlled treatment of a wide variety of cardiac arrhythmias and diseases.La fibrillation atriale affecte 2-3% des europĂ©ens et nord-amĂ©ricains, les tachycardies ventriculaires sont liĂ©es Ă  un risque important de mort subite. Les approches minimalement invasives comme l’Ablation par CathĂ©ter RadiofrĂ©quence (RFCA) ont rĂ©volutionnĂ© le traitement de ces maladies, mais le taux de rĂ©ussite de la RFCA est limitĂ© par le manque de techniques d’imagerie pour contrĂŽler cette ablation thermique.Le but de cette thĂšse est de proposer de nouvelles approches ultrasonores pour des traitements cardiaques minimalement invasifs guidĂ©s par Ă©chographie.Pour cela nous avons d’abord validĂ© la prĂ©cision et la viabilitĂ© clinique de l’Élastographie par Ondes de Cisaillement (SWE) en tant que modalitĂ© d’imagerie quantitative et temps rĂ©el pour l’ablation thermique in vivo. Ensuite nous avons implĂ©mentĂ© la SWE sur un transducteur intracardiaque et validĂ© la faisabilitĂ© d’évaluer l’ablation thermique in vitro et in vivo sur cƓur battant de gros animal. Puis nous avons dĂ©veloppĂ© un transducteur intracardiaque dual-mode pour effectuer l’ablation et l’imagerie ultrasonores avec les mĂȘmes Ă©lĂ©ments, sur le mĂȘme dispositif. Les lĂ©sions thermiques induites par Ultrasons FocalisĂ©s de Haute IntensitĂ© (HIFU) et contrĂŽlĂ©es par la SWE ont Ă©tĂ© rĂ©alisĂ©es avec succĂšs in vivo dans les oreillettes et les ventricules chez le gros animal. Finalement la SWE a Ă©tĂ© implĂ©mentĂ©e sur un dispositif d’imagerie et thĂ©rapie ultrasonores transƓsophagien et la faisabilitĂ© de cette approche a Ă©tĂ© dĂ©montrĂ©e in vitro et in vivo. Ces approches originales pourraient conduire Ă  de nouveaux dispositifs cliniques pour des traitements plus sĂ»rs et contrĂŽlĂ©s d’un large Ă©ventail d’arythmies et maladies cardiaques
    corecore