1,132 research outputs found

    User-Centered Virtual Reality for Promoting Relaxation: An Innovative Approach

    Get PDF
    [EN] Virtual reality has been used effectively to promote relaxation and reduce stress. It is possible to find two main approaches to achieve such aims across the literature. The first one is focused on genetic environments filled with relaxing "narratives" to induce control over one's own body and physiological response, while the second one engages the user in virtual reality-mediated activities to empower his/her own abilities to regulate emotion. The scope of the present contribution is to extend the discourse on VR use to promote relaxation, by proposing a third approach. This would be based on VR with personalized content, based on user research to identify important life events. As a second step, distinctive features of such events may be rendered with symbols, activities or other virtual environments contents. According to literature, it is possible that such an approach would obtain more sophisticated and long-lasting relaxation in users. The present contribution explores this innovative theoretical proposal and its potential applications within future research and interventionsPizzoli, SFM.; Mazzocco, K.; Triberti, S.; Monzani, D.; Alcañiz Raya, ML.; Pravettoni, G. (2019). User-Centered Virtual Reality for Promoting Relaxation: An Innovative Approach. Frontiers in Psychology. 10:1-8. https://doi.org/10.3389/fpsyg.2019.00479S1810Alcañiz, M., Botella, C., Baños, R. M., Zaragoza, I., & Guixeres, J. (2009). The Intelligent e-Therapy system: a new paradigm for telepsychology and cybertherapy. British Journal of Guidance & Counselling, 37(3), 287-296. doi:10.1080/03069880902957015Alcañiz, M., Botella, C., Rey, B., Baños, R., Lozano, J. A., de la Vega, N. L., … Hospitaler, A. (2007). EMMA: An Adaptive Display for Virtual Therapy. Lecture Notes in Computer Science, 258-265. doi:10.1007/978-3-540-73216-7_29Anderson, A. P., Mayer, M. D., Fellows, A. M., Cowan, D. R., Hegel, M. T., & Buckey, J. C. (2017). Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerospace Medicine and Human Performance, 88(6), 520-526. doi:10.3357/amhp.4747.2017Annemans, L., Redekop, K., & Payne, K. (2013). Current Methodological Issues in the Economic Assessment of Personalized Medicine. Value in Health, 16(6), S20-S26. doi:10.1016/j.jval.2013.06.008Annerstedt, M., Jönsson, P., Wallergård, M., Johansson, G., Karlson, B., Grahn, P., … Währborg, P. (2013). Inducing physiological stress recovery with sounds of nature in a virtual reality forest — Results from a pilot study. Physiology & Behavior, 118, 240-250. doi:10.1016/j.physbeh.2013.05.023Baños, R. M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., & Rey, B. (2004). Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology & Behavior, 7(6), 734-741. doi:10.1089/cpb.2004.7.734Hoffman, H. G., Patterson, D. R., Soltani, M., Teeley, A., Miller, W., & Sharar, S. R. (2009). Virtual Reality Pain Control during Physical Therapy Range of Motion Exercises for a Patient with Multiple Blunt Force Trauma Injuries. CyberPsychology & Behavior, 12(1), 47-49. doi:10.1089/cpb.2008.0056Baños, R. M., Botella, C., Guillen, V., García-Palacios, A., Quero, S., Bretón-López, J., & Alcañiz, M. (2009). An adaptive display to treat stress-related disorders: EMMA’s World. British Journal of Guidance & Counselling, 37(3), 347-356. doi:10.1080/03069880902957064Baños, R. M., Botella, C., Rubió, I., Quero, S., García-Palacios, A., & Alcañiz, M. (2008). Presence and Emotions in Virtual Environments: The Influence of Stereoscopy. CyberPsychology & Behavior, 11(1), 1-8. doi:10.1089/cpb.2007.9936Baños, R. M., Guillen, V., Quero, S., García-Palacios, A., Alcaniz, M., & Botella, C. (2011). A virtual reality system for the treatment of stress-related disorders: A preliminary analysis of efficacy compared to a standard cognitive behavioral program. International Journal of Human-Computer Studies, 69(9), 602-613. doi:10.1016/j.ijhcs.2011.06.002Bermudez i Badia, S., Quintero, L. V., Cameirao, M. S., Chirico, A., Triberti, S., Cipresso, P., & Gaggioli, A. (2019). Toward Emotionally Adaptive Virtual Reality for Mental Health Applications. IEEE Journal of Biomedical and Health Informatics, 23(5), 1877-1887. doi:10.1109/jbhi.2018.2878846Borkovec, T. D., & Costello, E. (1993). Efficacy of applied relaxation and cognitive-behavioral therapy in the treatment of generalized anxiety disorder. Journal of Consulting and Clinical Psychology, 61(4), 611-619. doi:10.1037/0022-006x.61.4.611Bosse, T., Gerritsen, C., de Man, J., & Treur, J. (2014). Towards virtual training of emotion regulation. Brain Informatics, 1(1-4), 27-37. doi:10.1007/s40708-014-0004-9Brewer, W. F. (1996). What is recollective memory? Remembering our Past, 19-66. doi:10.1017/cbo9780511527913.002Cohn, M. A., Fredrickson, B. L., Brown, S. L., Mikels, J. A., & Conway, A. M. (2009). Happiness unpacked: Positive emotions increase life satisfaction by building resilience. Emotion, 9(3), 361-368. doi:10.1037/a0015952Fairbanks, R. J., & Wears, R. L. (2008). Hazards With Medical Devices: The Role of Design. Annals of Emergency Medicine, 52(5), 519-521. doi:10.1016/j.annemergmed.2008.07.008Felix, M. M. dos S., Ferreira, M. B. G., da Cruz, L. F., & Barbosa, M. H. (2019). Relaxation Therapy with Guided Imagery for Postoperative Pain Management: An Integrative Review. Pain Management Nursing, 20(1), 3-9. doi:10.1016/j.pmn.2017.10.014Felnhofer, A., Kothgassner, O. D., Schmidt, M., Heinzle, A.-K., Beutl, L., Hlavacs, H., & Kryspin-Exner, I. (2015). Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. International Journal of Human-Computer Studies, 82, 48-56. doi:10.1016/j.ijhcs.2015.05.004Ferrer-García, M., & Gutiérrez-Maldonado, J. (2012). The use of virtual reality in the study, assessment, and treatment of body image in eating disorders and nonclinical samples: A review of the literature. Body Image, 9(1), 1-11. doi:10.1016/j.bodyim.2011.10.001Ferrer-Garcia, M., Gutiérrez-Maldonado, J., & Riva, G. (2013). Virtual Reality Based Treatments in Eating Disorders and Obesity: A Review. Journal of Contemporary Psychotherapy, 43(4), 207-221. doi:10.1007/s10879-013-9240-1Fisher, J. D. (1974). Situation-specific variables as determinants of perceived environmental aesthetic quality and perceived crowdedness. Journal of Research in Personality, 8(2), 177-188. doi:10.1016/0092-6566(74)90019-1Folkman, S., & Moskowitz, J. T. (2000). Positive affect and the other side of coping. American Psychologist, 55(6), 647-654. doi:10.1037/0003-066x.55.6.647Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56(3), 218-226. doi:10.1037/0003-066x.56.3.218Gilardi, S., Guglielmetti, C., & Pravettoni, G. (2013). Interprofessional team dynamics and information flow management in emergency departments. Journal of Advanced Nursing, 70(6), 1299-1309. doi:10.1111/jan.12284Gonçalves, R., Pedrozo, A. L., Coutinho, E. S. F., Figueira, I., & Ventura, P. (2012). Efficacy of Virtual Reality Exposure Therapy in the Treatment of PTSD: A Systematic Review. PLoS ONE, 7(12), e48469. doi:10.1371/journal.pone.0048469Gross, J. J. (1998). The Emerging Field of Emotion Regulation: An Integrative Review. Review of General Psychology, 2(3), 271-299. doi:10.1037/1089-2680.2.3.271Hemenover, S. H., & Bowman, N. D. (2018). Video games, emotion, and emotion regulation: expanding the scope. Annals of the International Communication Association, 42(2), 125-143. doi:10.1080/23808985.2018.1442239Hoffman, H. G., Chambers, G. T., Meyer, W. J., Arceneaux, L. L., Russell, W. J., Seibel, E. J., … Patterson, D. R. (2011). Virtual Reality as an Adjunctive Non-pharmacologic Analgesic for Acute Burn Pain During Medical Procedures. Annals of Behavioral Medicine, 41(2), 183-191. doi:10.1007/s12160-010-9248-7Holland, A. C., & Kensinger, E. A. (2010). Emotion and autobiographical memory. Physics of Life Reviews, 7(1), 88-131. doi:10.1016/j.plrev.2010.01.006Ip, H. H. S., Wong, S. W. L., Chan, D. F. Y., Byrne, J., Li, C., Yuan, V. S. N., … Wong, J. Y. W. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers & Education, 117, 1-15. doi:10.1016/j.compedu.2017.09.010Korpela, K. M., Ylén, M., Tyrväinen, L., & Silvennoinen, H. (2008). Determinants of restorative experiences in everyday favorite places. Health & Place, 14(4), 636-652. doi:10.1016/j.healthplace.2007.10.008Korpela, K. M., & Ylén, M. P. (2009). Effectiveness of Favorite-Place Prescriptions. American Journal of Preventive Medicine, 36(5), 435-438. doi:10.1016/j.amepre.2009.01.022Kyle, G., Graefe, A., Manning, R., & Bacon, J. (2004). Effects of place attachment on users’ perceptions of social and environmental conditions in a natural setting. Journal of Environmental Psychology, 24(2), 213-225. doi:10.1016/j.jenvp.2003.12.006Lang, P. J. (s. f.). Fear reduction and fear behavior: Problems in treating a construct. Research in psychotherapy., 90-102. doi:10.1037/10546-004León-Pizarro, C., Gich, I., Barthe, E., Rovirosa, A., Farrús, B., Casas, F., … Arcusa, A. (2007). A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and breast brachytherapy patients. Psycho-Oncology, 16(11), 971-979. doi:10.1002/pon.1171Lobel, A., Granic, I., & Engels, R. C. M. E. (2014). Stressful Gaming, Interoceptive Awareness, and Emotion Regulation Tendencies: A Novel Approach. Cyberpsychology, Behavior, and Social Networking, 17(4), 222-227. doi:10.1089/cyber.2013.0296Maples-Keller, J. L., Bunnell, B. E., Kim, S.-J., & Rothbaum, B. O. (2017). The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders. Harvard Review of Psychiatry, 25(3), 103-113. doi:10.1097/hrp.0000000000000138Maples-Keller, J. L., Yasinski, C., Manjin, N., & Rothbaum, B. O. (2017). Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress. Neurotherapeutics, 14(3), 554-563. doi:10.1007/s13311-017-0534-yMarín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., … Valenza, G. (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8(1). doi:10.1038/s41598-018-32063-4Marks, I. M., & Gelder, M. G. (1965). A Controlled Retrospective Study of Behaviour Therapy in Phobic Patients. British Journal of Psychiatry, 111(476), 561-573. doi:10.1192/bjp.111.476.561Miller, K. M. (1987). Deep Breathing Relaxation. AORN Journal, 45(2), 484-488. doi:10.1016/s0001-2092(07)68361-6Mitroff, S. R., Biggs, A. T., Adamo, S. H., Dowd, E. W., Winkle, J., & Clark, K. (2015). What can 1 billion trials tell us about visual search? Journal of Experimental Psychology: Human Perception and Performance, 41(1), 1-5. doi:10.1037/xhp0000012Mühlberger, A., Herrmann, M. J., Wiedemann, G., Ellgring, H., & Pauli, P. (2001). Repeated exposure of flight phobics to flights in virtual reality. Behaviour Research and Therapy, 39(9), 1033-1050. doi:10.1016/s0005-7967(00)00076-0Oliver, M. B., Bowman, N. D., Woolley, J. K., Rogers, R., Sherrick, B. I., & Chung, M.-Y. (2016). Video games as meaningful entertainment experiences. Psychology of Popular Media Culture, 5(4), 390-405. doi:10.1037/ppm0000066Oliver, M. B., Hartmann, T., & Woolley, J. K. (2012). Elevation in Response to Entertainment Portrayals of Moral Virtue. Human Communication Research, 38(3), 360-378. doi:10.1111/j.1468-2958.2012.01427.xParsons, T. D., & Reinebold, J. L. (2012). Adaptive virtual environments for neuropsychological assessment in serious games. IEEE Transactions on Consumer Electronics, 58(2), 197-204. doi:10.1109/tce.2012.6227413Parsons, T. D., & Rizzo, A. A. (2008). Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis. Journal of Behavior Therapy and Experimental Psychiatry, 39(3), 250-261. doi:10.1016/j.jbtep.2007.07.007Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: A review. Developmental Neurorehabilitation, 12(4), 224-238. doi:10.1080/17518420902991719Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175-1191. doi:10.1109/34.954607Pressman, S. D., & Cohen, S. (2005). Does positive affect influence health? Psychological Bulletin, 131(6), 925-971. doi:10.1037/0033-2909.131.6.925Renzi, C., Riva, S., Masiero, M., & Pravettoni, G. (2016). The choice dilemma in chronic hematological conditions: Why choosing is not only a medical issue? A psycho-cognitive perspective. Critical Reviews in Oncology/Hematology, 99, 134-140. doi:10.1016/j.critrevonc.2015.12.010Riva, G., Mantovani, F., Capideville, C. S., Preziosa, A., Morganti, F., Villani, D., … Alcañiz, M. (2007). Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology & Behavior, 10(1), 45-56. doi:10.1089/cpb.2006.9993Rizzo, A., Parsons, T. D., Lange, B., Kenny, P., Buckwalter, J. G., Rothbaum, B., … Reger, G. (2011). Virtual Reality Goes to War: A Brief Review of the Future of Military Behavioral Healthcare. Journal of Clinical Psychology in Medical Settings, 18(2), 176-187. doi:10.1007/s10880-011-9247-2Rodríguez, A., Rey, B., Clemente, M., Wrzesien, M., & Alcañiz, M. (2015). Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures. Expert Systems with Applications, 42(3), 1699-1709. doi:10.1016/j.eswa.2014.10.006Rodriguez, A., Rey, B., Vara, M. D., Wrzesien, M., Alcaniz, M., Banos, R. M., & Perez-Lopez, D. (2015). A VR-Based Serious Game for Studying Emotional Regulation in Adolescents. IEEE Computer Graphics and Applications, 35(1), 65-73. doi:10.1109/mcg.2015.8Rubin, D. C. (2005). A Basic-Systems Approach to Autobiographical Memory. Current Directions in Psychological Science, 14(2), 79-83. doi:10.1111/j.0963-7214.2005.00339.xRubin, D. C., & Kozin, M. (1984). Vivid memories. Cognition, 16(1), 81-95. doi:10.1016/0010-0277(84)90037-4Saadatmand, V., Rejeh, N., Heravi-Karimooi, M., Tadrisi, S. D., Zayeri, F., Vaismoradi, M., & Jasper, M. (2013). Effect of nature-based sounds’ intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: A randomised controlled trial. International Journal of Nursing Studies, 50(7), 895-904. doi:10.1016/j.ijnurstu.2012.11.018Serino, S., Triberti, S., Villani, D., Cipresso, P., Gaggioli, A., & Riva, G. (2013). Toward a validation of cyber-interventions for stress disorders based on stress inoculation training: a systematic review. Virtual Reality, 18(1), 73-87. doi:10.1007/s10055-013-0237-6Triberti, S., & Barello, S. (2016). The quest for engaging AmI: Patient engagement and experience design tools to promote effective assisted living. Journal of Biomedical Informatics, 63, 150-156. doi:10.1016/j.jbi.2016.08.010Tugade, M. M., Fredrickson, B. L., & Feldman Barrett, L. (2004). Psychological Resilience and Positive Emotional Granularity: Examining the Benefits of Positive Emotions on Coping and Health. Journal of Personality, 72(6), 1161-1190. doi:10.1111/j.1467-6494.2004.00294.xTulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie canadienne, 26(1), 1-12. doi:10.1037/h0080017Tusek, D. L., & Cwynar, R. E. (2000). Strategies for Implementing a Guided Imagery Program to Enhance Patient Experience. AACN Clinical Issues: Advanced Practice in Acute & Critical Care, 11(1), 68-76. doi:10.1097/00044067-200002000-00009Vara, M. D., Baños, R. M., Rasal, P., Rodríguez, A., Rey, B., Wrzesien, M., & Alcañiz, M. (2016). A game for emotional regulation in adolescents: The (body) interface device matters. Computers in Human Behavior, 57, 267-273. doi:10.1016/j.chb.2015.12.033Vempati, R. P., & Telles, S. (2002). Yoga-Based Guided Relaxation Reduces Sympathetic Activity Judged from Baseline Levels. Psychological Reports, 90(2), 487-494. doi:10.2466/pr0.2002.90.2.487Villani, D., Carissoli, C., Triberti, S., Marchetti, A., Gilli, G., & Riva, G. (2018). Videogames for Emotion Regulation: A Systematic Review. Games for Health Journal, 7(2), 85-99. doi:10.1089/g4h.2017.0108Villani, D., Riva, F., & Riva, G. (2007). New technologies for relaxation: The role of presence. International Journal of Stress Management, 14(3), 260-274. doi:10.1037/1072-5245.14.3.260Villani, D., Rotasperti, C., Cipresso, P., Triberti, S., Carissoli, C., & Riva, G. (2016). Assessing the Emotional State of Job Applicants Through a Virtual Reality Simulation: A Psycho-Physiological Study. eHealth 360°, 119-126. doi:10.1007/978-3-319-49655-9_16Witvliet, C. van O., Ludwig, T. E., & Laan, K. L. V. (2001). Granting Forgiveness or Harboring Grudges: Implications for Emotion, Physiology, and Health. Psychological Science, 12(2), 117-123. doi:10.1111/1467-9280.00320Wright, D., & Gaskell, G. (1992). The Construction and Function of Vivid Memories. Theoretical Perspectives on Autobiographical Memory, 275-292. doi:10.1007/978-94-015-7967-4_16Wrzesien, M., Rodríguez, A., Rey, B., Alcañiz, M., Baños, R. M., & Vara, M. D. (2015). How the physical similarity of avatars can influence the learning of emotion regulation strategies in teenagers. Computers in Human Behavior, 43, 101-111. doi:10.1016/j.chb.2014.09.02

    Simulation of hyperelastic materials in real-time using Deep Learning

    Get PDF
    The finite element method (FEM) is among the most commonly used numerical methods for solving engineering problems. Due to its computational cost, various ideas have been introduced to reduce computation times, such as domain decomposition, parallel computing, adaptive meshing, and model order reduction. In this paper we present U-Mesh: a data-driven method based on a U-Net architecture that approximates the non-linear relation between a contact force and the displacement field computed by a FEM algorithm. We show that deep learning, one of the latest machine learning methods based on artificial neural networks, can enhance computational mechanics through its ability to encode highly non-linear models in a compact form. Our method is applied to two benchmark examples: a cantilever beam and an L-shape subject to moving punctual loads. A comparison between our method and proper orthogonal decomposition (POD) is done through the paper. The results show that U-Mesh can perform very fast simulations on various geometries, mesh resolutions and number of input forces with very small errors

    Integrating Virtual Realities and Psychotherapy: SWOT Analysis on VR and MR Based Treatments of Anxiety and Stress-related Disorders

    Get PDF
    The use of virtual reality (VR) and mixed reality (MR) technology in clinical psychology is growing. Efficacious VR-based treatments for a variety of disorders have been developed. However, the field of technology-assisted psychotherapy is constantly changing with the advancement in technology. Factors such as interdisciplinary collaboration, consumer familiarity and adoption of VR products, and progress in clinical science all need to be taken into consideration when integrating virtual technologies into psychotherapies. We aim to present an overview of current expert opinions on the use of virtual technologies in the treatment of anxiety and stress-related disorders. An anonymous survey was distributed to a select group of researchers and clinicians, using an analytic framework known as Strengths, Weaknesses, Opportunities, and Threats (SWOT). Overall, the respondents had an optimistic outlook regarding the current use as well as future development and implementation of technology-assisted interventions. VR and MR psychotherapies offer distinct advantages that can overcome shortcomings associated with traditional therapy. The respondents acknowledged and discussed current limitations of VR and MR psychotherapies. They recommended consolidation of existing knowledge and encouraged standardisation in both theory and practice. Continued research is needed to leverage the strengths of VR and MR to develop better treatments

    POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres

    Get PDF
    The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced

    Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Get PDF
    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders

    Creating Bio-adaptive Visual Cues for a Social Virtual Reality Meditation Environment

    Get PDF
    This thesis examines designing and implementing adaptive visual cues for a social virtual reality meditation environment. The system described here adapts into user’s bio- and neurofeedback and uses that data in visual cues to convey information of physiological and affective states during meditation exercises supporting two simultaneous users. The thesis shows the development process of different kinds of visual cues and attempts to pinpoint best practices, design principles and pitfalls regarding the visual cue development in this context. Also examined are the questions regarding criteria for selecting correct visual cues and how to convey information of biophysical synchronization between users. The visual cues examined here are created especially for a virtual reality environment which differs as a platform from traditional two dimensional content such as user interfaces on a computer display. Points of interests are how to embody the visual cues into the virtual reality environment so that the user experience remains immersive and the visual cues convey information correctly and in an intuitive manner

    The Rocketbox Library and the Utility of Freely Available Rigged Avatars

    Get PDF
    As part of the open sourcing of the Microsoft Rocketbox avatar library for research and academic purposes, here we discuss the importance of rigged avatars for the Virtual and Augmented Reality (VR, AR) research community. Avatars, virtual representations of humans, are widely used in VR applications. Furthermore many research areas ranging from crowd simulation to neuroscience, psychology, or sociology have used avatars to investigate new theories or to demonstrate how they influence human performance and interactions. We divide this paper in two main parts: the first one gives an overview of the different methods available to create and animate avatars. We cover the current main alternatives for face and body animation as well introduce upcoming capture methods. The second part presents the scientific evidence of the utility of using rigged avatars for embodiment but also for applications such as crowd simulation and entertainment. All in all this paper attempts to convey why rigged avatars will be key to the future of VR and its wide adoption

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results
    corecore